• Title/Summary/Keyword: high temperature superconductivity

Search Result 593, Processing Time 0.025 seconds

Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic (퀸칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.2
    • /
    • pp.73-79
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.

Fabrication of good quality YBCO/STO/YBCO multilayers by using an ArF excimer laser deposition technique (ArF excimer laser 증착 기술을 이용한 우수한 특성의 YBCO/STO/YBCO 다층 박막 제작)

  • Jung, Tae-Bong;Kang, Joon-Hee
    • 한국초전도학회:학술대회논문집
    • /
    • v.10
    • /
    • pp.80-84
    • /
    • 2000
  • High temperature superconductor shows a good electric and magnetic properties and is known as a good candidate in various electronic device application. At present the technique to construct multilayers composed of HTS films and insulator films has not been fully studied in domestic research institutes. Since the construction of any reasonable eletronic devices require the use of multilayers, the development of HTS eletronic devices has been limited. To manufacture multiplayer, several processing steps which involve deposition and ion millings are required. To manufacture a good quality multilayerd structure, not only the deposition techniques but also the proper patterning have to be developed. In this work, we have fabricated a YBCO/STO/YBCO multiplayer and studied the electronic properties of it.

  • PDF

Characteristics of Dielectric Breakdown in Liquid Nitrogen (액체질소의 절연파괴특성)

  • 추영배;류경우;류강식;김상현
    • The Transactions of the Korean Institute of Electrical Engineers
    • /
    • v.37 no.12
    • /
    • pp.872-878
    • /
    • 1988
  • During the past few years, a great deal of attention has been directed to the application of superconductivity to the electrical systems such as superconducting power transmission lines, superconducting magnet energy storage and so on. Yet in order to develop the practical model of these electrical equiqments utilizing suprconductivety and other phenomena at cryogenic temperautre, it is necessary to know the dielectric behaviour of insulating materials at cryogenic temperature in view of reliability, safety and economy of these machines. Investigation of dielectric properties of cryogenic liquids is very important due to the dual role of those as the dielectric and cooling medium. In this study, we investigated results measured over several kinds of dielectric characteristics of liquid nitrogen taking into consideration for application of high Tc superconductor. Dependence of breakdown voltage of gap width, polarity and pressure is reported in this paper and time delay characteristics of breakdown is also the subject of this discussion.

  • PDF

Optimal Design of HTS Fault Current Limiter using Monte Carlo Simulation Method (Monte Carlo Simulation을 이용한 초전도 한류기 EMTDC 모델의 파라메터 최적 설계)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.53 no.3
    • /
    • pp.135-139
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is large fault current which exceeds the SCC(Short Circuit Capacity) of circuit breaker, As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. However, the parameters of HTS-FCL should be designed optimally to have a best performance. Under this background, this paper presents the optimal design method of parameters for resistive type HTS-FCL using stochastic analysis technique.

Distribution System modeling and Application for HTS Resistor type FCL (저항형 초전도 한류기를 위한 배전개통의 모델링과 적용)

  • Choi, Heung-Kwan;Yoon, Jae-Young;Kim, Jong-Yeul;Lee, Byong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11b
    • /
    • pp.250-252
    • /
    • 2002
  • Nowadays, one of the serious Problems in KEPCO system is the more higher fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current. As the superconductivity technology has been develops, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be a one of the attractive alternatives to solve the fault current problem. Under the this background, this paper presents distribution system EMTDC modeling and the application of EMTDC model for resistance type HTS-FCL in the developed distribution system model.

  • PDF

A Study on the Bus-Tie Application of 154kV HTS-FCL in Korean Power System (실계통에서의 154kV HTS-FCL Bus-Tie 최적 적용방안에 관한 연구)

  • Kim Jong-Yul;Yoon Jae Young;Lee Seung Rvul
    • The Transactions of the Korean Institute of Electrical Engineers A
    • /
    • v.54 no.5
    • /
    • pp.226-233
    • /
    • 2005
  • As the power demand has been increasing, a fault current problem is becoming more serious in real power system. Various ways like bus-split operation, transmission line open operation, are used in Korean power system for solving the problem. In this time, superconducting FCL(Fault Current Limiter) has been developed as a vary attractive alternative since HTS(High Temperature Superconductivity) was discovered. Korea, a project developing superconducting FCL to apply to 154kV transmission system is proceeding. Therefore, a power system analysis for SFCL application to power system is necessary, This paper presents the determination of quenching resistance and the selection of optimal cites when 154kV HTS-FCL is applied to Korean power system.

Assessment of Parameters for the Resistive type Superconducting Fault Current Limiter in Distribution System (배전 시스템에서의 저항형 초전도 한류기 파라미터 산정 방법)

  • Heo, Tae-Jeon;Bae, Hyeong-Thaek;Park, Min-Won;Yu, In-Keun
    • Proceedings of the KIEE Conference
    • /
    • 2003.07a
    • /
    • pp.412-414
    • /
    • 2003
  • Since the discovery of the high-temperature superconductors, many researches have been performed for the practical applications of superconductivity technologies in various fields. As results, significant progress has been achieved. Especially, Superconducting Fault Current Limiter (SFCL) offers an attractive means to limit fault current in power systems. In order to verify the effectiveness of the SFCL, in this paper, the analysis of fault current and voltage stability assessment in a distribution system are studied using the EMTDC based simulation method in which a novel component for a resistive type of SFCL is presented. Through the simulation, the most suitable SFCL's application point is selected and the assessment method for the parameters of the SFCL is also recommended.

  • PDF

Resistive Hts-Fcl Emtdc Modeling By Using Probabilistic Design Methodology

  • Yoon, Jae-Young;Kim, Jong-Yul;Lee, Seung-Ryul
    • KIEE International Transactions on Power Engineering
    • /
    • v.4A no.2
    • /
    • pp.69-72
    • /
    • 2004
  • Nowadays, one of the serious problems in the KEPCO system is a much higher fault current than the SCC (Short Circuit Capacity) of the circuit breaker. Since superconductivity technology has become more developed, the HTS-FCL (High Temperature Superconductor-Fault Current Limiter) may become an attractive alternative to solving the fault current problem. In order to achieve the best performance, the parameters of HTS-FCL should be designed optimally. Under this setting, this paper presents the optimal design method of parameters for resistive type HTS-FCL using the Monte Carlo technique.

Modeling of the HTS Fault Current Limiter Considering Quenching Characteristic (?칭 특성을 고려한 EMTDC 저항형 초전도 한류기 모텔링)

  • 윤재영;김종율;이승렬
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.53 no.2
    • /
    • pp.73-73
    • /
    • 2004
  • Nowadays, one of the serious problems in KEPCO system is the larger fault current than the SCC(Short Circuit Capacity) of circuit breaker. There are many alternatives to reduce the increased fault current such as isolations of bus ties, enhancement of SCC of circuit breaker, applications of HVDC-BTB(Back to Back) and FCL(fault current limiter). However, these alternatives have some drawbacks in viewpoints of system stability and cost. As the superconductivity technology has been developed, the HTS-FCL(High Temperature Superconductor-Fault Current Limiter) can be one of the attractive alternatives to solve the fault current problem. Under this background, this paper presents the EMTDC model for resistive type HTS-FCL considering the nonlinear characteristic of final resistance value when quenching Phenomena occur.