• Title/Summary/Keyword: high temperature superconducting wire

Search Result 105, Processing Time 0.035 seconds

Experiment of harmonic components in voltage on high temperature superconducting wire carrying an AC

  • Lee, Jiho;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.51-54
    • /
    • 2013
  • This paper deals with harmonic components of the voltage on high temperature superconducting wire carrying an alternating current. HTS wire is used to manufacture superconducting power applications carrying an alternating current. Typically, international standard, IEC 61788-3 is used for critical current measurement. Thus, it is not ideal that critical current criteria in dc are adapted to superconducting power devices to decide the operating current of the devices. In this paper, we confirmed odd harmonic voltage on HTS wires carrying an AC. The ratio between harmonic components and fundamental component can be significant clues to decide the critical current criteria for HTS wire and its power applications in AC circumstance.

Development of a PLD heater for continuous deposition and growth of superconducting layer

  • Jeongtae Kim;Insung Park;Gwantae Kim;Taekyu Kim;Hongsoo Ha
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.2
    • /
    • pp.14-18
    • /
    • 2023
  • Superconducting layers deposited on the metal substrate using the pulsed laser deposition process (PLD) play a crucial role in exploring new applications of superconducting wires and enhancing the performance of superconducting devices. In order to improve the superconducting property and increase the throughput of superconducting wire fabricated by pulsed laser deposition, high temperature heating device is needed that provides high temperature stability and strong durability in high oxygen partial pressure environments while minimizing performance degradation caused by surface contamination. In this study, new heating device have been developed for PLD process that deposit and growth the superconducting material continuously on substrate using reel-to-reel transportation apparatus. New heating device is designed and fabricated using iron-chromium-aluminum wire and alumina tube as a heating element and sheath materials, respectively. Heating temperature of the heater was reached over 850 ℃ under 700 mTorr of oxygen partial pressure and is kept for 5 hours. The experimental results confirm the effectiveness of the developed heating device system in maintaining a stable and consistent temperature in PLD. These research findings make significant contributions to the exploration of new applications for superconducting materials and the enhancement of superconducting device performance.

Comparison of superconducting generator with 2G HTS and MgB2 wires

  • Park, S.I.;Kim, J.H.;Le, T.D.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.4
    • /
    • pp.48-52
    • /
    • 2013
  • This paper compares the features of second generation (2G) High Temperature Superconducting (HTS) field coil with those of magnesium diboride ($MgB_2$) field coil for a 10 MW class superconducting generator. Both coils can function effectively in their respective magnetic flux density range: 10-12 T for 2G HTS field coil, 2 T for $MgB_2$ superconducting field coil. Even though some leading researchers have been developing 10 MW class superconducting generator with 2G HTS field coil, other research groups have begun to focus on $MgB_2$ wire, which is more economical and suitable for mass production. However 2G HTS wire is still appealing in functions such as in-field property and critical temperature, it shows higher in-field property and critical temperature than $MgB_2$ wire.

Design and Fabrication of High-Tc Superconducting Field coils (고온초전도 계자코일의 설계 및 제작)

  • Baik, S.K.;Jang, H.M.;Ko, R.K.;Sohn, M.H.;Kwon, Y.K.;Ryu, K.S.;Jo, Y.S.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07b
    • /
    • pp.775-777
    • /
    • 2000
  • Superconducting racetrack coils are used in areas of generators, motors, wiggler magnets and so on. Especially now a days many advanced nations including U.S., Japan are developing high temperature superconducting(HTS) wire which has better performance than low temperature superconducting(LTS) wire. Most of HTS wires such as Bi-2223 are manufactured with PIT(Power In Tube Method) process, so the shape of the wire looks like tape different from LTS wire of round shape as normal conductors. Generally HTS racetrack coils are composed of a few partial double-pancake colis and then the double-pancakes are jointed each other according to their applications.

  • PDF

Fabrication of $YBa_2Cu_3O_{7-{\delta}}$ Superconducting Coils with Polymer Binder (유기물 바인더를 사용한 $YBa_2Cu_3O_{7-{\delta}}$ 초전도 Coil의 제조)

  • 정해원;박승만;김재묵;김성수
    • Journal of the Korean Ceramic Society
    • /
    • v.27 no.3
    • /
    • pp.355-360
    • /
    • 1990
  • One of the possible ways to make a flexible wire of high-Tc superconductiong ceramics is the extrusion of a mixture slurry of superconducting powder with an appropriate polymer binder. The fabrication procedure for $YBa_2Cu_3O_{7-{\delta}}$ superconducting coils with this plastic mass is described. The major factors limiting the formation of extruded wire are the binder content, powder size, and entrapped gas in the mixture slurries. The optimum content of binder for both good flexbility and strength of wire was estimated to be 30wt%. The finer the powder size is, the more homogeneous structure the extruded wire has. The vacuum degassing before extrusion was necessary to remove the entrapped gas in as-extruded wire. The formability of wire depends greatly on the wire radius and binder content. After burning out the binder and the successive sintering, the contacts between the superconducting grains could be made. The resistivity vs. temperature behavior measured in the final wire showed the transition temperature of 90K with narrow transition width. However, the critical current densities of these wires are much lower in comparison to those of conventional bulk specimens.

  • PDF

A design of multi-width HTS magnets considering both wire consumption and field homogeneity

  • Yang, Hongmin;Ahn, Minchul
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.2
    • /
    • pp.24-27
    • /
    • 2021
  • This paper presents a design methodology of high-temperature superconducting (HTS) magnets. The magnet consists of several double pancake coils with a variety of wire width. This technique, named Multi-Width, is well known to make efficient use of the superconducting wire. It is common for design of high-temperature superconducting magnets to not only reduce wire consumption used, but also consider the homogeneity of the magnetic field. In this paper, we study a design method that efficiently reduces wire usage while considering magnetic field homogeneity. The design is carried out by calculating the critical current and the critical magnetic field according to the configuration of arranging the thickness of the wire to determine the number of windings. The width of wire comprising the magnet was set to 4 - 12 mm, and the number of double pancake coils was set to an even number to consist of top-down symmetry. To verify the validity of the design, we compared the progress of the design code with a complete enumeration survey. As a case study, we designed a magnet that generates a central magnetic field of 3 T or more in a 240 mm bore in diameter. Optimality can be evaluated by weighing wire consumption and field homogeneity according to the magnet's use or user preference.

Development and Characterization of High Temperature Superconducting Wire for Superconducting Cable System (초전도 케이블용 고온초전도 선재의 개발 및 특성평가)

  • Mean, Byoungjean;Lee, Jae-Hun;Kim, Young-Soon;Lee, Hunju;Moon, Seung-Hyun
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.1 no.1
    • /
    • pp.151-156
    • /
    • 2015
  • In order to improve the properties of high-temperature superconducting wire for superconducting cable system, we optimized the electro-polishing (EP), ion-beam assisted deposition (IBAD), superconducting (SC) layer, and baking (heat) treatment. The buffer layer was deposited on electro-polished substrate with RMS roughness ($R_{RMS}$) less than 5 nm. The IBAD process was carried out at $V_{beam}$: 1100 V and $V_{accel}$: 850 V that resulted in highly crystalline film of $LaMnO_3$. Chemical composition of SC layer is key to higher critical current, and we found that composition can be determined by surface color of SC layer. We adopt a proprietary contorl system based on RGB analysis of the surface and achieved critical current of 150 A/4 mm-width. The proposed baking treatment resulted in decreasing of about 10% of fraction defects.

Analysis of mechanical characteristics of superconducting field coil for 17 MW class high temperature superconducting synchronous motor

  • Kim, J.H.;Park, S.I.;Im, S.H.;Kim, H.M.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.3
    • /
    • pp.13-19
    • /
    • 2013
  • Superconducting field coils using a high-temperature superconducting (HTS) wires with high current density generate high magnetic field of 2 to 5 [T] and electromagnetic force (Lorentz force) acting on the superconducting field coils also become a very strong from the point of view of a mechanical characteristics. Because mechanical stress caused by these powerful electromagnetic force is one of the factors which worsens the critical current performance and structural characteristics of HTS wire, the mechanical stress analysis should be performed when designing the superconducting field coils. In this paper, as part of structural design of superconducting field coils for 17 MW class superconducting ship propulsion motor, mechanical stress acting on the superconducting field coils was analyzed and structural safety was also determined by the coupling analysis system that is consists of commercial electromagnetic field analysis program and structural analysis program.

Design and Fabrication of BSCCO-2223 Field Coils for Superconducting Synchronous Rotating Machine (초전도 동기기용 BSCCO-2223 계자코일의 설계 및 제작)

  • 백승규;장현만;손명환;권영길;류강식;조영식
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2001.02a
    • /
    • pp.104-107
    • /
    • 2001
  • Racetrack coils are used in many areas of superconductivity applications such as generators, motors, maglev, wiggler magnets and so on. Especially now a days a few advanced nations including U.S., Japan are developing high temperature superconducting(HTS) wire which has better performance than low temperature superconducting(LTS) wire. Most of HTS wires such as BSCCO-2223 are manufactured with PIT(Power In Tube) process, so the shape of the wire looks like tape different from LTS wire with round cross-sectional appearance like normal conductors. Generally HTS racetrack coils are composed of a few partial double-pancake colis and then the double-pancakes are jointed each other according to their applications.

  • PDF

Stress analysis of high-temperature superconducting wire under electrical/magnetic/bending loads

  • Dongjin Seo;Yunjo Jung;Hong-Gun Kim;Hyung-Seop Shin;Young-Soon Kim
    • Progress in Superconductivity and Cryogenics
    • /
    • v.25 no.4
    • /
    • pp.19-23
    • /
    • 2023
  • The Second-generation high-temperature superconducting (HTS) Rare-Earth Barium Copper Oxide (REBCO) wire is a composite laminate having a multi-layer structure (8 or more layers). HTS wires will undergo multiple loads including the bending-tension loads during winding, high current density, and high magnetic fields. In particular, the wires are subjected to bending stress and magnetic field stress because HTS wires are wound around a circular bobbin when making a high-field magnetic. Each of the different laminated wires inevitably exhibits damage and fracture behavior of wire due to stress deformation, mismatches in thermal, physical, electrical, and magnetic properties. Therefore, when manufacturing high-field magnets and other applications, it is necessary to calculate the stress-strain experienced by high-temperature superconducting wire to present stable operating conditions in the product's use environment. In this study, the finite element model (FEM) was used to simulate the strain-stress characteristics of the HTS wire under high current density and magnetic field, and bending loads. In addition, the result of obtaining the neutral axis of the wire and the simulation result was compared with the theoretical calculation value and reviewed. As a result of the simulation using COMSOL Multiphysics, when a current of 100 A was applied to the wire, the current value showed the difference of 10-9. The stress received by the wire was 501.9 MPa, which showed a theoretically calculated value of 500 MPa and difference of 0.38% between simulation and theoretical method. In addition, the displacement resulted is 30.0012 ㎛, which is very similar to the theoretically calculated value of 30 ㎛. Later, the amount of bending stress by the circular mandrel was received for each layer and the difference with the theoretically obtained the neutral axis result was compared and reviewed. This result will be used as basic data for manufacturing high-field magnets because it can be expanded and analyzed even in the case of wire with magnetic flux pinning.