• Title/Summary/Keyword: high temperature superconducting coated conductors

Search Result 30, Processing Time 0.027 seconds

Fabrication and Current Transport Properties of $TmBa_{2}Cu_{3}O_{7-x}$ Coated Conductor by PLD Process (PLD법을 이용한 $TmBa_{2}Cu_{3}O_{7-x}$ 초전도 선재 제작 및 전류전송특성 평가)

  • Kwon, O-Jong;Ko, Rock-Kil;Koo, Hyun;Bae, Sung-Hwan;Jung, Myung-Jin;Oh, Sang-Soo;Park, Chan
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.58 no.11
    • /
    • pp.2209-2213
    • /
    • 2009
  • $REBa_{2}Cu_{3}O_{7-d}$(REBCO) coated conductors(REBCO CCs) have been studied for electric power applications which require high current density wires. As long as the critical transition temperature(Tc) is concerned, REBCO CCs with large $RE^{3+}$ ions have been expected to have better current transport properties than those with smaller $RE^{3+}$ ions. For this reason, REBCO's with large $RE^{3+}$ ions which include GdBCO, NdBCO and SmBCO have been mainly considered as the superconducting layer of CCs. On the other hand, REBCO's with smaller $RE^{3+}$ions are expected to have advantages in the fabrication process of CCs because of the lower melting temperature. But it has not yet been made clear which REBCO is the most suitable for the superconducting layer of CCs. In this study, we investigated the current transport properties of REBCO CCs with small $RE^{3+}$ ion and advantages of using that in the CC fabrication process. Thin films of TmBCO, which has smaller $RE^{3+}$ion than most other $RE^{3+}$ ions, were fabricated on buffered metal substrate as the superconducting layer of CC by PLD process. TmBCO CC shows critical current density (Jc (77 K, sf) = $2.3\;MA/cm^2$) high enough to be utilized for application in electric power devices. Compared with previous experiments using the same PLD system, deposition temperature was approximately $20^{\circ}C$ lower than NdBCO thin films on buffered metal substrates.

Preparation of cube-textured pure Ni sheets for substrates of high-$T_c$ superconducting coated conductors (고온초전도 도체의 기판을 위한 cube-texture된 니켈의 제조)

  • Kim, Su-Young;Kim, Sung-Gon;Jeong, Dae-Young;Lee, Won-Jae;Cho, Kyung-Mox
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05a
    • /
    • pp.34-37
    • /
    • 2003
  • 본 연구는 고온초전도 coated coductors의 기판으로 cube texture된 순수 Ni 기판을 개발하기 위하여 전체 가공율과 압연율에 따른 (100) texture의 변화와 1차적으로 열처리한 기판을 다시 압연한 후 재열처리 하였을 때의 전체 가공율과 압연율에 따른 (100) texture의 변화를 GADS XRD와 SEM을 이용하여 연구하고자 하였다. 그 결과, 압연 후에는 압연율에 관계없이 비교적 약한 강도의 (220)과 (200), (111), (311) peak가 나타났는데, 4%로 압연했을 경우 (220) peak가 가장 강한 peak로 나타난 반면, 10%로 압연한 경우에는 (200) peak가 비교적 강하게 나타났다. 그러나 이를 $900^{\circ}C$에서 열처리한 후에는 (200) peak 만 뚜렷이 발달되어 나타났는데, 전체 가공율과 압연율이 높을수록 (200) peak의 강도가 높게 나타나 압연을 통하여 발달한 결정립자의 (110) 면을 따른 배열이 열처리 과정을 통하여 회전하여 (100)면을 따른 배열로 바뀌는 것으로 추측할 수 있었다. 그러나 $900^{\circ}C$에서 열처리한 두께 0.2mm 판재를 다시 0.1mm까지 4%와 10%의 압연율로 압연하고 500~$900^{\circ}C$에서 1시간동안 최종 열처리한 후에는 상대적으로 낮은 2차 가공율에 의하여 집합조직의 전체 가공율과 압연율에의 의존성이 사라지는 것으로 나타났다.

  • PDF

A Study on the Characteristic Evaluation of An HTS Coil with respect to the Winding Methods

  • Jo, Hyun-Chul;Choi, Suk-Jin;Jang, Jae-Young;Hwang, Young-Jin;Lee, Chang-Young;Ahn, Min-Cheol;Yoon, Yong-Soo;Ko, Tae-Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.12 no.4
    • /
    • pp.31-35
    • /
    • 2010
  • In superconducting magnet applications, winding methods of the superconducting magnet can be classified into a layer winding and a pancake winding. The superconducting magnet using high temperature superconductor (HTS) with rectangular shape is generally fabricated using the pancake winding method. On the other hand, low temperature superconducting (LTS) magnet may be wound by either a pancake winding or a layer winding. Compared with the layer winding, the pancake winding method has a merit of easy replacement of a damaged pancake module, but it also has a demerit of requirement of splicing between each double pancake modules. In this paper, we investigated characteristics of the layer and pancake winding methods using HTS. Six samples were wound out of BSCCO and Coated Conductors (CCs) by two winding methods and their characteristics were experimentally observed.

Hall voltage measurement with respect to internal layout of REBCO coated conductors in an external magnetic field

  • Kim, Young Gon;Baek, Geonwoo;Han, Seunghak;Choi, Yojong;Kim, Junseong;Jeon, Haeryong;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.21 no.4
    • /
    • pp.48-52
    • /
    • 2019
  • Recently, many studies have been reported on the magnetoresistance and Hall effect of REBCO thin films and bulk. The voltage interferes quench detection of high-temperature superconducting magnet and generates leakage current in no insulation high-temperature superconducting coil. Therefore, in this paper, experiments on magnetoresistance and Hall effect of commercial YBCO and GdBCO tapes have been carried out. As a result, anomalous voltages expected for the magnetoresistance and Hall effect of REBCO tapes were observed and analyzed. In addition, the voltage characteristics of REBCO have been identified, and the Hall coefficient are calculated for use in high magnetic field magnet applications.

In-situ electron beam growth of $YBa_2Cu_3O_{7-x}$ coated conductors on metal substrates

  • Jo, W.;Ohnishi, T.;Huh, J.;Hammond, R.H.;Beasley, M.R.
    • Progress in Superconductivity
    • /
    • v.8 no.2
    • /
    • pp.175-180
    • /
    • 2007
  • High temperature superconductor $YBa_2Cu_3O_{7-x}$ (YBCO) films have been grown by in-situ electron beam evaporation on artificial metal tapes such as ion-beam assisted deposition (IBAD) and rolling assisted biaxially textured substrates (RABiTS). Deposition rate of the YBCO films is $10{\sim}100{\AA}/sec$. X-ray diffraction shows that the films are grown epitaxially but have inter-diffusion phases, like as $BaZrO_3\;or\;BaCeO_3$, at their interfaces between YBCO and yttrium-stabilized zirconia (YSZ) or $CeO_2$, respectively. Secondary ion mass spectroscopy depth profile of the films confirms diffused region between YBCO and the buffer layers, indicating that the growth temperature ($850{\sim}900^{\circ}C$) is high enough to cause diffusion of Zr and Ba. The films on both the substrates show four-fold symmetry of in-plane alignment but their width in the -scan is around $12{\sim}15^{\circ}$. Transmission electron microscopy shows an interesting interface layer of epitaxial CuO between YBCO and YSZ, of which growth origin may be related to liquid flukes of Ba-Cu-O. Resistivity vs temperature curves of the films on both substrates were measured. Resistivity at room temperature is between 300 and 500 cm, the extrapolated value of resistivity at 0 K is nearly zero, and superconducting transition temperature is $85{\sim}90K$. However, critical current density of the films is very low, ${\sim}10^3A/cm^2$. Cracking of the grains and high-growth-temperature induced reaction between YBCO and buffer layers are possible reasons for this low critical current density.

  • PDF

Fabrication of SmBCO superconducting coated conductor using 100m class batch-type co-evaporation method (100m 급 batch-type co-evaporation 증착장치를 이용한 SmBCO 초전도테이프 제조)

  • Kim, H.S.;Oh, S.S.;Ha, H.S.;Yang, J.S.;Kim, T.H.;Lee, N.J.;Jeong, Y.H.;Ko, R.K.;Song, K.J.;Ha, D.W.;Youm, D.J.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2006.11a
    • /
    • pp.24-25
    • /
    • 2006
  • SmBCO coated conductors were successfully fabricated using EDDC (Evaporation using Drum in Dual Chambers) deposition system that is a bath type co-evaporation system for fabrication of superconducting tape and divided into two chambers named evaporation chamber and reaction chamber. To obtain long and high quality superconducting coated conductor, it is very important to secure the uniformity of all the deposition parameters m the deposition system such as deposition temperature, oxygen partial pressure, compositional ratios and so on. Therefore, we investigated the distribution of the parameters along the axis of the drum m EDDC on which tapes were wound helically. When the temperature on the middle point of deposition zone was $700^{\circ}C$, that on the edge of deposition zone was $675^{\circ}C$. When the thickness of SmBCO layer on the middle point of deposition zone was 1063 nm, that on the edge of deposition zone was 899 nm. The partial pressure of oxygen was 5 mTorr in the reaction chamber while that was $7{\times}10^{-5}$Torr in the evaporation chamber. The composition ratio of Sm:Ba:Cu, that was measured by EDX, was very uniform along the axis of the drum. Under these deposition conditions, critical current distribution along the drum axis was 175 A/cm, 190A/cm, 217.5 A/cm, 182.5 A/cm, 175 A/cm with the interval of 9 cm between samples. It means that the EDDC system has the potential of fabricating (100m, 200A) class coated conductor.

  • PDF

Brief review of the field test and application of a superconducting fault current limiter

  • Hyun, Ok-Bae
    • Progress in Superconductivity and Cryogenics
    • /
    • v.19 no.4
    • /
    • pp.1-11
    • /
    • 2017
  • This article reviews the recent activities of field testing and application of superconducting fault current limiters (SFCL) based on high-temperature superconductors (HTS). The review particularly focuses on the trends in the field tests in terms of the technical aspects and commercial activities of the SFCLs. Stimulated by the discovery of HTS, numerous research and development activities have been conducted worldwide for SFCLs operating from distribution voltages to transmission voltages. Different types of SFCLs have been developed and field-tested. Consequently, more than 20 field tests and applications have been performed on real grids worldwide while supplying electric power to the customers. These field tests have not only provided the track records of the operation experiences including the problems and maintenance during operation, but also proved their current limiting capabilities against real faults, rendering this new technology highly viable. Through these activities, the following trends in the status of field testing and application are observed. Resistive-type SFCLs with HTS-coated conductors were dominantly used in the most recent field tests. This implies that the resistive type is technically more mature than the other types. Bus-bar coupling and transformer feeders were the major application locations. It is of importance that most of the field applications were conducted as R&D projects. A relevant change from the R&D stage to the application stage is shown as recently deployed SFCLs are expected to be under long-term operation and commercial service. Here, we review the installation of these SFCLs by substation. This review also discusses the recent activities for their commercial applications.

Dual Field Coils Conceptual Design of Rotating Armature type High Temperature Superconducting Generator (회전전기자형 고온초전도 발전기의 이중계자 권선 개념 설계)

  • Park, Sang Ho;Kim, Yungil;Lee, Seyeon;Lee, Ji-Young;Kim, Woo-Seok;Lee, Ji-Kwang;Choi, Kyeongdal
    • Proceedings of the KIEE Conference
    • /
    • 2015.07a
    • /
    • pp.1122-1123
    • /
    • 2015
  • 본 논문에서는 회전전기자형 고온초전도 발전기의 이중 계자를 제안하고 설계를 하였다. 기존의 동기발전기는 회전자가 계자이지만, 본 논문에서는 전기자를 회전자로 설계하였다. 고정자인 계자는 전기자의 내측과 외측에 위치하게 설계하여 이중계자라고 하였다. 초전도 선재는 제조사에 의해 규격이 정해져있다. 계자에 대전류를 사용하기 위해서는 적층등의 방법들이 있다. 적층하여 구리 권선으로 계자를 권선시 저항과 인덕턴스의 불균등을 제거하기 위하여 구리 권선을 일정한 간격으로 위치를 변환시키는 전위의 방법이 사용된다. 하지만 초전도 선재의 경우는 꺽기, 비틀기등의 방법이 불가능하므로 이 방법을 사용할 수 없다. 그래서 선재를 펀칭하여 선재를 전위시키는 CTCC(Continuously Transposed Coated Conductors) 등의 방법을 사용한다. 본 연구에서는 CTCC 형태의 초전도 권선을 사용하여 기본 모델과 이중계자 권선을 설계하고 특성을 비교하였다. 초전도 선재를 적층하여 사용함으로 계자부의 면적은 증가하지만 인덕턴스, 길이등의 불균등을 제거할 수 있으며 적층 선재수가 증가할수록 계자부 면적은 감소하는 장점이 발생한다.

  • PDF

The fabrication of bulk magnet stacked with HTS tapes for the magnetic levitation

  • Park, Insung;Kim, Gwantae;Kim, Kyeongdeok;Sim, Kideok;Ha, Hongsoo
    • Progress in Superconductivity and Cryogenics
    • /
    • v.24 no.3
    • /
    • pp.47-51
    • /
    • 2022
  • With the innovative development of bio, pharmaceutical, and semiconductor technologies, it is essential to demand a next-generation transfer system that minimizes dust and vibrations generated during the manufacturing process. In order to develop dust-free and non-contact transfer systems, the high temperature superconductor (HTS) bulks have been applied as a magnet for levitation. However, sintered HTS bulk magnets are limited in their applications due to their relatively low critical current density (Jc) of several kA/cm2 and low mechanical properties as a ceramic material. In addition, during cooling to cryogenic temperatures repeatedly, cracks and damage may occur by thermal shock. On the other hand, the bulk magnets made by stacked HTS tapes have various advantages, such as relatively high mechanical properties by alternate stacking of the metal and ceramic layer, high magnetic levitation performance by using coated conductors with high Jc of several MA/cm2, consistent superconducting properties, miniaturization, light-weight, etc. In this study, we tried to fabricate HTS tapes stacked bulk magnets with 60 mm × 60 mm area and various numbers of HTS tape stacked layers for magnetic levitation. In order to examine the levitation forces of bulk magnets stacked with HTS tapes from 1 to 16 layers, specialized force measurement apparatus was made and adapted to measure the levitation force. By increasing the number of HTS tapes stacked layers, the levitation force of bulk magnet become larger. 16 HTS tapes stacked bulk magnets show promising levitation force of about 23.5 N, 6.538 kPa at 10 mm of levitated distance from NdFeB permanent magnet.

Refinement of Gd2O3 inclusions in the GdBa2Cu3O7-δ films fabricated by the RCE-DR process

  • Park, I.;Oh, W.J.;Lee, J.H.;Moon, S.H.;Yoo, S.I.
    • Progress in Superconductivity and Cryogenics
    • /
    • v.20 no.4
    • /
    • pp.46-49
    • /
    • 2018
  • To improve in-field critical current densities ($J_c$) of $GdBa_2Cu_3O_{7-{\delta}}$ (GdBCO) coated conductors(CCs) fabricated by the reactive co-evaporation by deposition and reaction (RCE-DR) process, employing the nominal composition of Gd:Ba:Cu=1:1:2.5, we tried to refine the $Gd_2O_3$ particles trapped in the GdBCO superconducting matrix. For this purpose, we carefully selected the processing conditions on the stability phase diagram of GdBCO for this composition. By lowering the growth temperature of $Gd_2O_3$ in the liquid, we could refine the average particle size of $Gd_2O_3$ particles trapped in the GdBCO matrix and also achieve the zero-resistive transition temperatures ($T_{c,zero}$) of 92.3~94.2 K. Unfortunately, however, it was unsuccessful to achieve enhanced in-field $J_c$ values from these samples because of an air-contamination of the amorphous precursor film before its conversion into crystalline GdBCO film, suggesting that any exposure of the amorphous precursor film to air is fatal in obtaining high performance GdBCO CCs via the RCE-DR process.