• Title/Summary/Keyword: high temperature state

Search Result 1,600, Processing Time 0.031 seconds

Solubility Study of Nickel Ferrite in Boric Acid Using a Flow-Through Autoclave System under High Temperature and High Pressure

  • Park, Yong Joon;Choi, Ke-Chon;Ha, Yeong-Keong
    • Nuclear Engineering and Technology
    • /
    • v.48 no.2
    • /
    • pp.554-558
    • /
    • 2016
  • The solubility of nickel ferrite in an aqueous solution of boric acid was studied by varying the pH at the temperatures ranging from $25^{\circ}C$ to $320^{\circ}C$. A flow-through autoclave system was specially designed and fabricated to measure the solubility of Fe in hydrothermal solutions under high temperature and pressure. The performance of this flow-through system was directly compared with the conventional static state technique using a batch-type autoclave system. The stability of fluid velocity for the flow-through autoclave system was verified prior to the solubility measurement. The influence of chemical additives, such as boric acid and $H_2$, on the solubility of nickel ferrite was also evaluated.

A Study on the Characteristics of High Temperature and Mechanisms for Creep Deformation of AZ31 Mg Alloy (AZ31마그네슘 합금의 고온특성 및 크리이프 변형기구에 관한연구)

  • Kang, D.M.;An, J.O.
    • Journal of Power System Engineering
    • /
    • v.9 no.4
    • /
    • pp.96-101
    • /
    • 2005
  • Magnesium alloys have been widely used for many structural components of automobiles and aircraft because of high specific strength and good cast ability in spite of hexagonal closed-packed crystal structure of pure magnesium. In this study, uniaxial tension tests at high temperature and creep tests are done in order to investigate the characteristics of high temperature and mechanisms for creep deformation of AZ31 Mg alloy. Yield stress and ultimate tensile stress decreased with increasing temperature, but elongation increased from results of uniaxial tension test at high temperature. The apparent activation energy Qc, the applied stress exponent n and rupture life have been determined during creep of AZ31 Mg alloy over the temperature range of 473K to 573K and stress range of 23.42 MPa to 93.59 MPa, respectively, in order to investigate the creep behavior. Constant load creep tests were carried out in the equipment including automatic temperature controller, whose data are sent to computer. At around the temperature of $473K{\sim}493K$ and under the stress level of $62.43{\sim}93.59%MPa$, and again at around the temperature of $553K{\sim}573K$ and under the stress level of $23.42{\sim}39.00MPa$, the creep behavior obeyed a simple power-law relating steady state creep rate to applied stress and the activation energy for the creep deformation was nearly equal, respectively, and a little low to that of the self diffusion of Mg alloy including aluminum. Also rupture surfaces at high temperature have had bigger dimples than those at lower temperature by SEM.

  • PDF

Steady- and Transient-State Analyses of Fully Ceramic Microencapsulated Fuel with Randomly Dispersed Tristructural Isotropic Particles via Two-Temperature Homogenized Model-I: Theory and Method

  • Lee, Yoonhee;Cho, Bumhee;Cho, Nam Zin
    • Nuclear Engineering and Technology
    • /
    • v.48 no.3
    • /
    • pp.650-659
    • /
    • 2016
  • As a type of accident-tolerant fuel, fully ceramic microencapsulated (FCM) fuel was proposed after the Fukushima accident in Japan. The FCM fuel consists of tristructural isotropic particles randomly dispersed in a silicon carbide (SiC) matrix. For a fuel element with such high heterogeneity, we have proposed a two-temperature homogenized model using the particle transport Monte Carlo method for the heat conduction problem. This model distinguishes between fuel-kernel and SiC matrix temperatures. Moreover, the obtained temperature profiles are more realistic than those of other models. In Part I of the paper, homogenized parameters for the FCM fuel in which tristructural isotropic particles are randomly dispersed in the fine lattice stochastic structure are obtained by (1) matching steady-state analytic solutions of the model with the results of particle transport Monte Carlo method for heat conduction problems, and (2) preserving total enthalpies in fuel kernels and SiC matrix. The homogenized parameters have two desirable properties: (1) they are insensitive to boundary conditions such as coolant bulk temperatures and thickness of cladding, and (2) they are independent of operating power density. By performing the Monte Carlo calculations with the temperature-dependent thermal properties of the constituent materials of the FCM fuel, temperature-dependent homogenized parameters are obtained.

The Microfluidic Device using Viscosity Deviation of Magnetic Fluids Due to Temperature Changes (자성유체의 온도에 따른 점성 변화를 이용한 미소 유체 소자)

  • Choi, Bum-Kyoo;Oh, Jae-Geun;Ahn, Jeong-Jae
    • Journal of Sensor Science and Technology
    • /
    • v.13 no.6
    • /
    • pp.473-478
    • /
    • 2004
  • This study focused on the charateristic of magnetic fluids, the viscosity deviation of magnetic fluids due to temperature changes, and fabrication of a 'purely' liquid type microvalve. The viscosity of magnetic fluids decreases sharply during increasing of temperature. The viscosity of magnetic fluids is rated 1,000 cP at the room temperature and 25 cP when the temperature reaches $100^{\circ}C$. Briefly, it is remarkable that the fluid flow can be controlled by the temperature and this characteristic can be adopted to the microfluidics as a microvalve. The fabrication of a liquid type microvalve is more easy than solid state microvalves and which can increase an efficiency of the controlability with respect to the thermo-pneumatic micropump which is studied broadly for many years. When the magnetic fluid used as a sealant for high level sealing, the pressure leakage is less than solid state microvalve. The experimental results show that the pressure drop in microchannel, filled with the magnetic fluid, is significant in the temperature range of $20^{\circ}C{\sim}50^{\circ}C$ and this result explains why the use of magnetic fluids is possible as a microvalve searcher uses this characteristics. Well known thermo-pnumatic.

The Effect of Layer Spacing Changes in the SmA Phase on Defects Observed in SSFLC Devices.

  • Wang, Chenhui;Bos, Philip J.;Kumar, Satyendra;Wand, Michael;Handschy, Mark
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.193-197
    • /
    • 2004
  • The effect of the temperature dependence of the smectic layer spacing in the smectic-A (SmA) phase on the formation of defects in the ferroelectric smectic-$C^{\ast}$ ($SmC^{\ast}$) phase is investigated with x-ray scattering technique. The study is based on thin parallel-aligned surface stabilized ferroelectric liquid crystal cells with two different alignment conditions, high pretilt $SiO_x$, alignment and low pretilt polyimide films. It is found that defects observed in the $SmC^{\ast}$ phase have much more profound dependence on the layer changes and chevron formation in the SmA phase than in the $SmC^{\ast}$ phase. We find that thermal layer expansion with decreasing temperature in the SmA phase suppresses the formation of defects observed in the SmC phase.

  • PDF

Fatigue performance assessment of welded joints using the infrared thermography

  • Fan, J.L.;Guo, X.L.;Wu, C.W.
    • Structural Engineering and Mechanics
    • /
    • v.44 no.4
    • /
    • pp.417-429
    • /
    • 2012
  • Taking the superficial temperature increment as the major fatigue damage indicator, the infrared thermography was used to predict fatigue parameters (fatigue strength and S-N curve) of welded joints subjected to fatigue loading with a high mean stress, showing good predictions. The fatigue damage status, related to safety evaluation, was tightly correlated with the temperature field evolution of the hot-spot zone on the specimen surface. An energetic damage model, based on the energy accumulation, was developed to evaluate the residual fatigue life of the welded specimens undergoing cyclic loading, and a good agreement was presented. It is concluded that the infrared thermography can not only well predict the fatigue behavior of welded joints, but also can play an important role in health detection of structures subjected to mechanical loading.

Solid-state NMR Studies of Phenethyl Sulfonic Acid-functionalized MCM-41

  • Chul Kim
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.74-81
    • /
    • 2024
  • A sulfonic acid-water-silanol system in SO3H-functionalized MCM-41 was investigated using solid-state nuclear magnetic resonance techniques. The proton exchange rate between a water molecule and a silanol group in the S-PE-MCM-41 was determined by analyzing the 1D proton spectra, the proton EXSY spectrum, and 2H spin-lattice relaxation data under various hydration levels. Two kinds of water-bounding sites were found in the S-PE-MCM-41: weakly and strongly bound sites. Over several hours, water molecules bound to the weakly bound sites at the low hydration level migrated to the strongly bound sites. At high temperature, the S-PE-MCM-41 easily lost water molecules weakly bound to the silanol, while the strongly bound water molecules survived. Water molecules that participated in the hydration of the phenethyl sulfonate were involved in the hydrogenbonded silanol mechanism of proton conductivity. This phenomenon contributes higher proton conductivity to the S-PE-MCM-41 by the cooperation of sulfonyl and silanol groups in the proton transfer process, even at higher temperature.

Temperature and magnetic field dependent optical properties of superconducting $MgB_2$ thin film (초전도 $MgB_2$ 박막의 온도와 장기장의 변화에 따른 광학적 성질)

  • Jung, J. H.;Lee, H. J.;Kim, K. W.;Kim, M. W.;Noh, T. W.;Wang, Y. J.;Kang, W. N.;Jung, C. U.;Lee, Sung-Ik
    • Progress in Superconductivity
    • /
    • v.3 no.1
    • /
    • pp.31-35
    • /
    • 2001
  • We investigated the temperature and magnetic field dependent optical properties of a$ MgB_2$ thin film in the far-infrared region. In the superconducting state, i.e. 5 K, we obtained the values of superconducting gap $2\Delta$ ~ 5.2 meV and $2\Delta$ $_{k}$ $B/T_{c}$ ~1.8. Although the value of$ 2\Delta$$B/T_{c}$ was nearly half of the BCS value, the $2\Delta$ seemed to follow the temperature dependence of the BCS formula. Under the magnetic field (H), the superconducting state became suppressed. Interestingly, we found that the normal state area fraction abruptly increased at low field but slowly increased at high field. It did not follow the H-dependences predicted for a s-wave superconductor (i.e. a linear dependence) nor for a s-wave one (i.e. $H^{1}$2/ dependence). We discussed the complex gap nature of $MgB_2$ in comparison with two gap and anisotropic s-wave scenarios.ios.

  • PDF

Modeling the Threshold Voltage of SiC MOSFETs for High Temperature Applications (고온 응용을 위한 SiC MOSFET 문턱전압 모델)

  • 이원선;오충완;최재승;신동현;이형규;박근형;김영석
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.15 no.7
    • /
    • pp.559-563
    • /
    • 2002
  • A threshold voltage model of SiC N-channel MOSFETs for high-temperature and hard radiation environments has been developed and verified by comparing with experimental results. The proposed model includes the difference in the work functions, the surface potential, depletion charges and SiC/$SiO_2$acceptor-like interface state charges as a function of temperature. Simulations of the model shoved that interface slates were the most dominant factor for the threshold voltage decrease as the temperature increase. To verify the model, SiC N-chnnel MOSFETS were fabricated and threshold voltages as a function of temperature were measured and compared wish model simulations. From these comparisons, extracted density of interface slates was $4{\times}10^{12}\textrm{cm}^{-2}eV^{-1}$.

Characteristics of High-Temperature Energy Storage Materials (고온 축열재료의 특성)

  • Shin, Byung-Chul;Kim, Sang-Done;Park, Kun-You;Park, Won-Hoon
    • Solar Energy
    • /
    • v.7 no.1
    • /
    • pp.61-74
    • /
    • 1987
  • This review evaluates the state of art in the field of high-temperature energy storage materials and systems. The physical and chemical properties, corrosion data and practical applications of the phase change materials, especially the inorganic salts applicable to storage temperature in the range of $100-850^{\circ}C$ have been summarized. Fluoride salts have excellent thermal storage properties, but these are less attractive in terms of cost and corrosion problem of container materials. The nitrate and nitrite have attractive properties in the temperature range up to $600^{\circ}C$, at which the rate of decomposition becomes unacceptable. Carbonates euteutic salts can be considered as the most promising energy storage material on the basis of their low cost and excellent material compatibility for corrosion in the temperature range up to $850^{\circ}C$.

  • PDF