• Title/Summary/Keyword: high temperature retention time

Search Result 100, Processing Time 0.056 seconds

On the dimensional stabilization of woods with treatment of Polyethylene Glycol-400 (폴리에치렌 글리콜-400에 의한 목재(木材)의 칫수안정화(安定化))

  • Cho, Nam-Seok;Jo, Jea-Myeong;Bae, Kyu-Yong
    • Journal of the Korean Wood Science and Technology
    • /
    • v.3 no.1
    • /
    • pp.3-15
    • /
    • 1975
  • How to stabilize wood against shrinking and swelling in variable atmospheric moisture conditions is important to the wood-using industry and a challenge to research. Polyethylene glycol stabilize wood by bulking the fiber. PEG also serve as a chemical seasoning agent, suppress decay in high concentrations, and have slight effect on physical properties, gluing or finishing. The study designed to determine the effect of PEG-400 on the dimensional stabilization of local hardwoods for wood carvings that could supply a greatly expanding tourist trade and making curved furniture parts, lamp stands and other decorative objects, and possible gunstock. The species examined were 6 species, Seo-Namoo (Carpinus laxiflora), Cheungcheung-Namoo (Cornus controversa), Gorosae-Namoo (Acer mono), Karae-Namoo (Juglans mandshurica), Jolcham-Namoo (Quercusserrata) and Sanbud-Namoo (Prunus sargentii), used as block of 5cm thick radially to the grain, 7cm wide tangentially, and 70cm long parallel to the wood grain. All these test piecies were conditioned above the fiber saturation point before impregnation. The stabilization effects were determined for PEG-400 treated woods in a 50 percent solution for 20 days. The following conclusions were obtained. PEG retentions increased with treating time. It was more effective to treat at 60$^{\circ}C$ than at room temperature. In degree of PEG-400 impregnation on species, Cheungcheung-Namoo havinglow specific gravity had the highest retentions, 68.77% but the lowest, 56.33% was shown in Jolcham-Namoo with high specific gravity. Specific gravity of treated wood increased considerably with effectiveness of polymer loading. The increases in specific gravity were 5.36 to 13.16 percent. The highest was Jolcham-Namoo, the lowest Karae-Namoo. On the dimensional stability, a 40 percent of effectiveness of polymer loading was just as effective as 60 percent in reduction in water absorptivity (RWA), antishrinkage efficiency (ASE) and antiswelling efficiency (AE), and from over 60 percent they increased more rapidly. Also species response varied considerably. ASE was 30.12 to 69.97 percent tangentially and 27.86 to 56.37 percent radially, AE 34.06 to 73.76 percent tangentially and 30.11 to 70.12 percent radially, and RWA 42.31 to 65.32 percent. No differences in volume swelling among the 6 species were observed. Its values were ranged from 14.98 to 19.55 percent and also increased with PEG retentions. On the mechanical properties, the strengths very much decreased with PEG-400 loadings as shown in Figure 12; that were 11.41 to 22.90 percent in compression, 21.61 to 34.35 percent in bending and 22.83 to 36.83 percent in tensile strength. PEG retention in cell wall was less than 1 percent and the most of PEG were immersed in cell lumen. Except for Korae-Namoo, effectivenesses of polymer loading were as much high as 61.58 to 75.02 percent. This is believed to be due to the effect of PEG-400 on excellant dimensional stability of treated woods.

  • PDF

A Study of Milk Waste Recycling as an Energy Source and Reduction of Pollution by Anaerobic Digestion (혐기성 소화를 통한 유가공 폐기물의 에너지원으로의 재활용과 오염 감소 방안에 관한 연구)

  • Lim, Samuel;Lim, Hyun-Ji;Jung, Kook-Jin
    • Journal of Dairy Science and Biotechnology
    • /
    • v.27 no.1
    • /
    • pp.13-18
    • /
    • 2009
  • We confirmed methane production and reduction of pollution during anaerobic digestion of milk waste and analyzed the economic potential of using milk waste as a renewable energy source. The milk waste sludge was obtained from the Pasteur milk factory and processed by anaerobic digestion to produce methane. The methane production from two completely mixed tank reactors with an effective capacity of 6 ${\ell}$, 15 days of hydraulic retention time (HRT), and a mid-temperature of $35^{\circ}C$ averaged 4.11 ${\ell}$/day. The total chemical oxygen demand (TCOD) during production decreased from an initial 31,416 mg/${\ell}$ to 13,500 mg/${\ell}$, showing a maximum TCOD removal efficiency of 60%. When HRT was reduced to 12 days, methane production increased by 44% under a high-temperature condition of $55^{\circ}C$. An economic analysis based on these results was applied to a Korean milk factory of typical size and demonstrated that the installation of an anaerobic digester could provide sufficient economic profit.

  • PDF

A Development and Validation of Cosmetic Container Based on L-Ascorbic Acid Oxidation Property (L-Ascorbic Acid의 산화특성에 따른 화장품 용기 개발 및 유효성 분석)

  • Yoon, Sungwook
    • Journal of the Society of Cosmetic Scientists of Korea
    • /
    • v.39 no.2
    • /
    • pp.149-158
    • /
    • 2013
  • L-ascorbic acid, the representative antioxidants, has a great effect on skin whitening, collagen synthesis, and anti-aging, but has low oxidative stability during storage. Therefore, in this study, thermal and oxidation properties of L-ascorbic acid under various storage conditions (powder, aqueous phase, changes of temperature, UV-irradiation, and inflow of external air etc.) were investigated. And the storage stability of ingredient was validated in the double-spaced pouch by analysing oxidation properties under each storage conditions (powder phase and blended with essence). In oder to analyze the thermal properties, TGA, DSC, and FT-IR analysis were carried out and UV-visible spectrophotometer & redox titration were used in parallel for oxidation property analyses. From the result of experiment, L-ascorbic acid was oxidized fast when it contained lots of metallic ion, hydroxy ion in aqueous solution under high temperature, UV-irradiation & inflow external air, whereas it was not oxidized for a long time when it was stored as pure powder although it has same condition as heating up, UV-irradiation & inflow external air. Based on this result, retention period of cosmetics which is using L-ascorbic acid, less stable material in oxidation can be innovatively increased when using double-spaced pouch that is designed and produced for separating storage of active ingredients.

Hydrochar Production from Kenaf via Hydrothermal Carbonization: Effect of Process Conditions on Hydrochar Characterization (열수탄화를 통해 kenaf로부터 hydrochar생산과 공정 조건에 따른 hydrochar 특성에 끼치는 영향)

  • Youn, Hee Sun;Um, Byung Hwan
    • Applied Chemistry for Engineering
    • /
    • v.33 no.1
    • /
    • pp.28-37
    • /
    • 2022
  • The lignite and bituminous coal are mainly used in thermal power plant. They exhaust green house gas (GHG) such as CO2, and become deplete, thus require alternative energy resources. To solve the problem, the hydrochar production from biomass is suggested. In this study, both hydrothermal carbonization (HTC) and solvothermal carbonization (STC) were used to produce high quality hydrochar. To improve the reactivity of water solvent process in HTC, STC process was conducted using ethanol solution. The experiments were carried out by varying the solid-liquid ratio (1:4, 1:8, 1:12), reaction temperature (150~300 ℃) and retention time (15~120 min) using kenaf. The characteristic of hydrochar was analyzed by EA, FT-IR, TGA and SEM. The carbon content of hydrochar increased up to 48.11%, while the volatile matter decreased up to 39.34%. Additionally, the fuel characteristic of hydrochar was enhanced by reaction temperature. The results showed that the kenaf converted to a fuel by HTC and STC process, which can be used as an alternative energy source of coal.

UV Photodegradation of Chlorinated VOCs: Removal Efficiency and Products (염소계 VOCs의 UV 광분해 연구: 제거율 및 부산물)

  • Kang, InSun;Xi, Jinying;Wang, Can;Hu, Hong-Ying
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.33 no.2
    • /
    • pp.87-96
    • /
    • 2017
  • In this study, 4 gases containing typical chlorinated volatile organic compounds (VOCs) were treated by ultraviolet (UV) irradiation. The typical chlorinated VOCs are dichloromethane (DCM), trichloromethane (TCM), carbon tetrachloride (CTC) and trichloroethylene (TCE). The removal efficiency (RE) and the products of chlorinated VOCs by UV irradiation are investigated. At this time, 2 types of background gas (air and nitrogen) were used to figure out the RE by photooxidation and photolysis. The specification of UV-lamp used in this study was low-pressure mercury lamp emitting wavelength of 185~254 nm. The experimental conditions were set as initial VOC concentration of $180{\pm}10ppm$, empty bed retention time (EBRT) of 53 s, temperature of $23{\pm}2^{\circ}C$ and relative humidity of $65{\pm}5%$. In the photolysis condition with nitrogen ($N_2$) as background gas, the averaged RE of the 4 types of chlorinated VOCs was about 24% higher than that with photooxidation; and the REs of VOCs except CTC were confirmed as >99%. The composition of off-gases after UV photooxidation in air was investigated and several intermediates from DCM, TCM and TCE were detected by GC/MS. Among them, phosgene which is a toxics was detected as an intermediate of TCM. In addition, the concentration of carbon dioxide ($CO_2$) in the off-gases was measured to calculate the mineralization rate (MR). With the photooxidation, TCE showed the highest RE (>99%) while MR was the lowest (17%); and the MR of DCM was the highest (86%). In addition, particulate matters (PM) in the off-gases was also detected and high concentrated $PM_{10}$ ($21,580{\mu}g{\cdot}m^{-3}$) and $PM_{2.5}$ ($6,346{\mu}g{\cdot}m^{-3}$) were detected in TCE off-gas. More than 99% of the chlorinated VOCs could be removed using UV254-185 nm lamp, while it is necessary to conduct further studies on the production and treatment of secondary pollutants.

Biological treatment process for Food wastewater Using ER-1 bioreactor (다단 수직형 호기성반응기(ER-1)를 이용한 음식물 폐수의 생물학적 처리기술)

  • Lee, Jae-ki;Choi, Hong-Bok;Shin, Eung-Bai;Park, Ju-Hyoung;Choi, Eun-Ju;Kim, Jung-Rae;Park, Young-Sook
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.14 no.4
    • /
    • pp.113-120
    • /
    • 2006
  • Wastewater generated through the food waste recycling process have known high concentration, BOD 20,000~150,000 mg/L, which has to treat to the proper level because of a ban on reclamation. But it is impossible to treat less than 10 days by existing water treatment plant. Ecodays Ltd. is to treat this wastewater during 2~4 days by ER-1, which can simultaneously induce the modified PFR(Plug Flow Reactor) of the oxygen transfer rate, MLVSS concentration, and influent concentration to top from bottom of reactor. We tested the pilot test about low concentration food wastewater(BOD 16,500 mg/L) and high concentration food wastewater(64,431 mg/L) at the food waste recycling plant of H-Gun(20t/d). Hydraulic retention time(HRT) of ER-1 for low concentration food wastewater is 2.5day. In low concentration conditions, ER-1 treatment efficiency is to appear BOD 99%, COD 98%, TN 97%, and TP 96%. While ER-1 process for high concentration food wastewater treatment is composed 2 stages, which are to be HRT 2.5day for law wastewater and HRT 1.5 day for secondary treatment. In high concentration conditions, ER-1 treatment efficiency is to appear BOD 97%, COD 84%, TN 66%, and TP 95%. It is treated without temperature control about high temperature($50^{\circ}C$) to appear low treatment efficiency in high concentration conditions.

  • PDF

COATED PARTICLE FUEL FOR HIGH TEMPERATURE GAS COOLED REACTORS

  • Verfondern, Karl;Nabielek, Heinz;Kendall, James M.
    • Nuclear Engineering and Technology
    • /
    • v.39 no.5
    • /
    • pp.603-616
    • /
    • 2007
  • Roy Huddle, having invented the coated particle in Harwell 1957, stated in the early 1970s that we know now everything about particles and coatings and should be going over to deal with other problems. This was on the occasion of the Dragon fuel performance information meeting London 1973: How wrong a genius be! It took until 1978 that really good particles were made in Germany, then during the Japanese HTTR production in the 1990s and finally the Chinese 2000-2001 campaign for HTR-10. Here, we present a review of history and present status. Today, good fuel is measured by different standards from the seventies: where $9*10^{-4}$ initial free heavy metal fraction was typical for early AVR carbide fuel and $3*10^{-4}$ initial free heavy metal fraction was acceptable for oxide fuel in THTR, we insist on values more than an order of magnitude below this value today. Half a percent of particle failure at the end-of-irradiation, another ancient standard, is not even acceptable today, even for the most severe accidents. While legislation and licensing has not changed, one of the reasons we insist on these improvements is the preference for passive systems rather than active controls of earlier times. After renewed HTGR interest, we are reporting about the start of new or reactivated coated particle work in several parts of the world, considering the aspects of designs/ traditional and new materials, manufacturing technologies/ quality control quality assurance, irradiation and accident performance, modeling and performance predictions, and fuel cycle aspects and spent fuel treatment. In very general terms, the coated particle should be strong, reliable, retentive, and affordable. These properties have to be quantified and will be eventually optimized for a specific application system. Results obtained so far indicate that the same particle can be used for steam cycle applications with $700-750^{\circ}C$ helium coolant gas exit, for gas turbine applications at $850-900^{\circ}C$ and for process heat/hydrogen generation applications with $950^{\circ}C$ outlet temperatures. There is a clear set of standards for modem high quality fuel in terms of low levels of heavy metal contamination, manufacture-induced particle defects during fuel body and fuel element making, irradiation/accident induced particle failures and limits on fission product release from intact particles. While gas-cooled reactor design is still open-ended with blocks for the prismatic and spherical fuel elements for the pebble-bed design, there is near worldwide agreement on high quality fuel: a $500{\mu}m$ diameter $UO_2$ kernel of 10% enrichment is surrounded by a $100{\mu}m$ thick sacrificial buffer layer to be followed by a dense inner pyrocarbon layer, a high quality silicon carbide layer of $35{\mu}m$ thickness and theoretical density and another outer pyrocarbon layer. Good performance has been demonstrated both under operational and under accident conditions, i.e. to 10% FIMA and maximum $1600^{\circ}C$ afterwards. And it is the wide-ranging demonstration experience that makes this particle superior. Recommendations are made for further work: 1. Generation of data for presently manufactured materials, e.g. SiC strength and strength distribution, PyC creep and shrinkage and many more material data sets. 2. Renewed start of irradiation and accident testing of modem coated particle fuel. 3. Analysis of existing and newly created data with a view to demonstrate satisfactory performance at burnups beyond 10% FIMA and complete fission product retention even in accidents that go beyond $1600^{\circ}C$ for a short period of time. This work should proceed at both national and international level.

A Study on Qualitative and Quantitative Analysis of Major ingredients in Scutellariae radix (황금(Scutellariae radix)의 주요 성분의 정성 및 정량분석에 관한 연구)

  • Rhee, Jae-Seong;Woo, Eun Ran;Kim, Nam-Hyuk;Lee, Eun-Ju;An, Duk-Kyun;Lee, Je-Hyun;Park, Seong Kyu;Park, Ho-Koon
    • Analytical Science and Technology
    • /
    • v.10 no.2
    • /
    • pp.91-104
    • /
    • 1997
  • Scutellariae radix has been used on the control of body fever as oriental medicine for thousand years. Analytical aspect for the main components of Scutellariae radix was set up improving sensitivity and resolution. The analysis of 3 different flavonoids present in Scutellariae radix-baicalin, baicalein, wogonin-was conducted by means of high performance liquid chromatography with ODS reverse phase column in conjunction with a Photo Diode Array UV detector(280nm) at $40^{\circ}C$. Mobile phase was carried out at 1mL/min, composed of acetonitrile and 0.1M phosphoric acid in the form of a gradient method. Under these circumstances the retention time for baicalin, baicalein, wogonin was 7.65, 11.65 and 14.12 minutes respectively. As a result for the efficiency on extraction of active ingredients with proposed analytical process according to it's growing districts, Sunchang in Junbuk for baicalin and Bulkyo in, Junnam for bicalein and wogonin have shown the best results. Even the extraction at room temperature was satisfactory. Among acids, 0.1M acetic acid revealed the best achievements. The mixture of acetonitrile and 0.2M phosphoric acid(75:25) has been shown the best efficiency as well as stability for the extraction of active ingredients.

  • PDF

Influence of Operating Parameters on Nitrite Accumulation in a Biofilm Reactor and Supplement of External Carbon Source for Denitrification by Sewage Sludge Solubilization (생물막 반응조에서 아질산염 축적에 미치는 운전인자 영향과 하수슬러지 가용화에 의한 탈질반응의 외부탄소원 공급에 관한 연구)

  • Ahn, Hye Min;Lee, Dae Sung
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.35 no.1
    • /
    • pp.57-63
    • /
    • 2013
  • A combined process consisted of a biofilm reactor and a continuously stirred-tank reactor (CSTR) was investigated for highly loaded ammonium wastewater treatment via nitrite accumulation. To enhance ammonium oxidizing bacteria over nitrite oxidizing bacteria on the surface of carriers, the biofilm reactor was operated at temperature of $35^{\circ}C$ for more than three months but the influent ammonium (500 mg-N/L) was partially oxidized to nitrite (240 mg-N/L). As pH was increased from 7.5 to 8.0, nitrite accumulation was fully achieved due to the inhibition of nitrite oxidizing bacteria under high free ammonia concentration. The biofilm reactor performance was severely deteriorated at the hydraulic retention time of 12 hr, at which incomplete nitrification of ammonia was observed. Various solubilization methods were applied to sewage sludge for enhancing its biodegradability and the combined method, alkaline followed by ultrasonic, gave the highest solubilization efficiency (58%); the solubilized solution was used as the external carbon source for denitrification reaction in CSTR. FISH analysis showed that the dominant microorganisms on the carriers were ammonium oxidizing bacteria such as Nitrosomonas spp. and Nitrospirar spp. but low amounts of nitrite oxidizing bacteria as Nitrobacter spp. was also detected.

Characteristics of Microbial Distribution of Nitrifiers and Nitrogen Removal in Membrane Bioreactor by Fluorescence in situ Hybridization (막/생물반응기에서 Fluorescence in situ Hybridization 기법을 이용한 질산화 미생물 분포특성 및 질소제거 연구)

  • Lim Kyoung-Jo;Kim Sun-Hee;Kim Dong-Jin;Cha Gi-Cheol;Yoo Ik-Keun
    • Microbiology and Biotechnology Letters
    • /
    • v.34 no.3
    • /
    • pp.257-264
    • /
    • 2006
  • An aerobic submerged membrane bioreactor (MBR) treating ammonium wastewater was studied in respect of nitrification characteristics and distribution of nitrification bacteria over a period of 350 days. MBR was fed with ammonium concentration of 500-1000 mg $NH_4-N/L$ at a nitrogen load of $1-2kg\;N/m^3{\cdot}d$. Overall ammonium oxidation rate increased with dissolved oxygen (DO) concentration, temperature, and sludge retention time (SRT). Under a higher concentration of free ammonia ($NH_3-N$) due to the decrease of ammonium oxidation rate, the nitrite ratio ($NO_2-N/NO_x-N$) in the effluent increased. The sudden collapse of nitrification efficiency accompanied by sludge foaming and the increase of sludge volume index (SVI) was observed unexpectedly during the operation. At the later stage of operation, additional carbon source was fed to the MBR and resulted in twice higher value of SVI and the decrease of ammonium oxidation rate. In fluorescence in situ hybridization (FISH) analysis, genus Nitrosomonas which is specifically hybridized with probe NSM156 was initially the dominant ammonia oxidizing bacteria and the amount of Nitrosospira gradually increased. Nitrospira was the dominant nitrite oxidizing bacteria during whole operational period. Significant amount of Nitrobacter was also detected which might due to the high concentration of nitrite maintained in the reactor.