• 제목/요약/키워드: high temperature high shear

검색결과 426건 처리시간 0.022초

극저온 환경 하 플라이우드의 전단 거동 및 파손 특성 분석 (Analysis of Shear Behavior and Fracture Characteristics of Plywood in Cryogenic Environment)

  • 손영무;김정대;오훈규;김용태;박성보;이제명
    • 한국해양공학회지
    • /
    • 제33권5호
    • /
    • pp.394-399
    • /
    • 2019
  • Plywood is a laminated wood material where alternating layers are perpendicular to each other. It is used in a liquefied natural gas (LNG) carrier for an insulation system because it has excellent durability, a light weight, and high stiffness. An LNG cargo containment system (LNG CCS) is subjected to loads from gravity, sloshing impact, hydrostatic pressure, and thermal expansion. Shear forces are applied to an LNG CCS locally by these loads. For these reasons, the materials in an LNG CCS must have good mechanical performance. This study evaluated the shear behavior of plywood. This evaluation was conducted from room temperature ($25^{\circ}C$) to cryogenic temperature ($-163^{\circ}C$), which is the actual operating environment of an LNG storage tank. Based on the plywood used in an LNG storage tank, a shear test was conducted on specimens with thicknesses of 9 mm and 12 mm. Analyses were performed on how the temperature and thickness of the plywood affected the shear strength. Regardless of the thickness, the strength increased as the temperature decreased. The 9 mm thick plywood had greater strength than the 12 mm thick specimen, and this tendency became clearer as the temperature decreased.

실내환경과 건설현장 온도변수를 고려한 고력볼트 체결력 예측 (Estimation on Clamping Force of High Strength Bolts Considering Temperature Variable of Both Site conditions and Indoor Environments)

  • 나환선;이현주
    • 복합신소재구조학회 논문집
    • /
    • 제6권3호
    • /
    • pp.32-40
    • /
    • 2015
  • The torque shear high strength bolt is clamped normally at the break of pin-tail specified. However, the clamping forces on slip critical connections do not often meet the required tension, as it considerably fluctuates due to torque coefficient dependent on lubricant affected temperature. In this study, the clamping tests of torque shear bolts were conducted independently at indoor conditions and at construction site conditions. During last six years, temperature of candidated site conditions was recorded from $-11^{\circ}C$ to $34^{\circ}C$. The indoor temperature condition was ranged from $-10^{\circ}C$ to $50^{\circ}C$ at each $10^{\circ}C$ interval. As for site conditions, the clamping force was reached in the range from 159 to 210 kN and the torque value was from 405 to $556 N{\cdot}m$. The range of torque coefficient at indoor conditions was analyzed from 0.126 to 0.158 while tensions were indicated from 179 to 192 kN. The torque coefficient at site conditions was ranged from 0.118 to 0.152. Based on this test, the variable trends of torque coefficient, tension subjected temperature can be taken by statistic regressive analysis. The variable of torque coefficient under the indoor conditions is $0.13%/^{\circ}C$ while it reaches $2.73%/^{\circ}C$ at actual site conditions. When the indoor trends and site conditions is combined, the modified variable of torque coefficient can be expected as $0.2%/^{\circ}C$. and the modified variable of tension can be determined as $0.18%/^{\circ}C$.

Adhesion Properties of Urea-Melamine-Formaldehyde (UMF) Resin with Different Molar Ratios in Bonding High and Low Moisture Content Veneers

  • Xu, Guang-Zhu;Eom, Young-Geun;Lim, Dong-Hyuk;Lee, Byoung-Ho;Kim, Hyun-Joong
    • Journal of the Korean Wood Science and Technology
    • /
    • 제38권2호
    • /
    • pp.117-123
    • /
    • 2010
  • The objective of this research was executed to investigate the effect of molar ratio of formaldehyde to urea and melamine (F/(U+M)) of urea-melamine-formaldehyde (UMF) resin on bonding high and low moisture content veneers. For that purpose, UMF resin types with 5 different F/(U+M) molar ratios (1.45, 1.65, 1.85, 2.05, and 2.25) synthesized were used in present study. First, their curing behavior was evaluated by differential scanning calorimetry. Second, their adhesion performance in bonding high and low moisture content veneers was evaluated by probe tack and dry and wet shear strength tests. Curing temperature and reaction enthalpy decreased with the increase of F/(U+M) molar ratio. And the dry and wet shear strengthsof plywood manufactured from low moisture content veneers were higher than thoseof plywood manufactured from high moisture content veneers. Also, the maximum initial tack force on the low moisture content veneer was higher than that on the high moisture content veneer.

고온숙성에 의한 저급육의 연도개선과 그 이용 (Tenderness Improvement and Utilization of Low Quality Meat by High Temperature Aging)

  • 성삼경
    • 한국식품과학회지
    • /
    • 제21권4호
    • /
    • pp.549-555
    • /
    • 1989
  • 저급육인 한우숫소의 앞다리고기를 도살직후 $16{\pm}2^{\circ}C$에서 고온숙성하여 연도개선 효과를 검토하였다. 또한 24시간 고온숙성한 후, 재구성육을 조제하여 결착성 개선방법을 모색하였다. 시료의 처리는 소금(0, 0.5, 1.0%), pyrophosphate(0, 0.3, 0.5%)와 이들의 혼용효과를 검토하였고, 소금(0.5%)과 pyrophosphate(0.3%)를 혼용한 원료에 succinic anhydride(0, 0.1, 0.2, 0.3%)를 첨가하여 석시닐산의 첨가효과를 검토하였다. 얻어진 결과는 다음과 같다. 1. 고온숙성은 저온숙성에 비하여 전단력이 낮았고, 근원섬유소편화지수가 높았으며, 연도개선의 효과가 뛰어났다. 전자현미경에 의한 형태학적 변화의 결과도 이들 결과 일치하였다. 2. 재구성육의 파단응력은 소금과 인산염의 첨가수준이 증가할수록 높아졌고, 소금과 인산염을 혼용할 경우, 현저히 증가하였다. 3. 조리수율은 소금과 인산염의 첨가수준이 증가할수록 낮아졌고, 소금과 인산염을 혼용할 경우, 현저하게 감소하였다. 4. TBA가는 소금 첨가수준에 비례하여 증가하였으며, 인산염 및 인산염과 소금혼용의 경우는 약간 증가하는 경향이었다. 5. 석신산은 재구성육의 결착력과 품질개선에 전혀 도움이 되지 않았다.

  • PDF

분말고속도공구강의 미끄럼 마모특성에 미치는 열처리조건의 영향 (The Effects of Heat-treating Conditions on Wear Characteristics of High Speed Steel by Powder Metallurgy)

  • 이한영;배종수;김용진
    • 열처리공학회지
    • /
    • 제13권6호
    • /
    • pp.405-411
    • /
    • 2000
  • The effects of added elements, such as Co or Nb, on wear properties of high speed steel by powder metaliurgy(PM-HSS) had been eluminated in auther's previous paper. In addition, it is generally known that the wear properties of materials have been influenced by heat-treating conditions as well. Therefore, a study has been done to clarify the effects of heat-treating conditions on wear properties of PM-HSS. The wear tests have been performed under the same conditions as the previous paper using heat-treated PM-HSS(5%Co-1%Nb) with different quenching and tempering temperatures. The result of this paper shows that wear resistance of PM-HSS is improved with relatively high quenching temperature. However, tempering temperature is not sensitive to the wear resistance in the range of high quenching temperature. It may be deduced by the fact that the shear strength of matrix by strengthening mechanisms due to not only the quenching aging but also dispersion-hardening is improved.

  • PDF

공구내부냉각에 의한 고장력합금강의 피삭성에 관한 연구 (A Study on the Machinability of High Strength Steel with Internally Cooled Cutting Tool)

  • 김정두
    • Tribology and Lubricants
    • /
    • 제5권1호
    • /
    • pp.44-50
    • /
    • 1989
  • High strength steel is similar to carbon steel in its composition. This material is developed originally for special uses such as aerospace and automobile due to its high strength and shock-free property in spite of lightness. But the chemical attraction of high strength steel is serious, which includes comminution of formation, metalization and strengthening. Machining results in built-up edge between this material and the tool. Especially the work hardening behavior results in tool life shortening, which was caused by temperature generation during machining. In this study, cooling system was made in which liquid nitrogen is supplied to circulate in order to make up for these weaknesses. Machining of high strength steels, which is recognized as difficult to machine materials, was conducted after tool is cooled at -195$\circ$C. Experimental results showed that the tool was cooled down rapidly below -195$\circ$C in about 200 seconds. The tool temperature of machining with cooling system was lowered by 60~95$\circ$C than that of machining in room temperature. The hardness of the surface of chip is decreased by machining with cooling system. And the machining using the cooling system made it possible to increase shear angle, to retain smooth surface on chip without built-up-edge and to get a better roughness.

Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module

  • Zhang, Peiyao;Guo, Quanquan;Pang, Sen;Sun, Yunlun;Chen, Yan
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.357-373
    • /
    • 2022
  • The high-temperature gas-cooled reactor pebble-bed module project is the first commercial Generation-IV NPP(Nuclear Power Plant) in China. A new joint is used for the vertical support of RPV(Reactor Pressure Vessel). The steel corbel is integrally embedded into the reactor-cabin wall through eight asymmetrically arranged pre-stressed high-strength bolts, achieving the different path transmission of shear force and moment. The vertical monotonic loading test of two specimens is conducted. The results show that the failure mode of the joint is bolt fracture. There is no prominent yield stage in the whole loading process. The stress of bolts is linearly distributed along the height of corbel at initial loading. As the load increases, the height of neutral axis of bolts gradually decreases. The upper and lower edges of the wall opening contact the corbel plate to restrict the rotation of the corbel. During the loading, the pre-stress of some bolts decreases. The increase of the pre-stress strength ratio of bolts has no noticeable effect on the structure stiffness, but it reduces the ultimate bearing capacity of the joint. A simplified calculation model for the elastic stage of the joint is established, and the estimation results are in good agreement with the experimental results.

Bacillus sp. K-1과 변이주들에 의해 생산된 Biopolymer의 물성에 미치는 온도 및 농도의 영향 (Effects of Temperature and Concentration on the Rheological Properties of the Biopolymer Produced by Bacillus sp. K-1 Strain and Mutants)

  • 정낙현;윤광섭;임무현
    • 한국식품저장유통학회지
    • /
    • 제4권3호
    • /
    • pp.343-349
    • /
    • 1997
  • The rheological Voperties of biopolymers produced by Bacilli sp. K-1 and its mutant strains(KM-21, KM-83) were studied at the temperature ranges with 20∼80$^{\circ}C$, at the concenration of 2∼6%, at the pH ranges from 3.0 to 9.0 and at the shear rate of 9.3-930sec-1 The apparent viscosity of biopolymers was decreased with increasing shear rate, and thereby biopolymers showed pseudoplastic characteristics. It was found that the apparent viscosity models respected 19 temperature, concentration and both temperature and concentration were expressed by Arrhenius Model, Exponential Model and combined of the above two Models. Therefore, the apparent viscosity could be predictable by Arrhenius and Exponential Models with high R2.

  • PDF

호밀가루의 레올로지 특성분석 (Analysis of Rheological Properties of Rye Flour)

  • 이귀현
    • Journal of Biosystems Engineering
    • /
    • 제35권6호
    • /
    • pp.408-412
    • /
    • 2010
  • Rheological properties of cereals such as rye are great important for the design of die for extrusion and the development of models for extrusion process. Therefore, this study was carried out to analyze the rheological properties according to moisture content of rye flour and extrusion temperature. Rheological properties of rye flour were investigated by using a capillary rheometer for moisture content of three levels (30, 35, 40%) and extrusion temperature of three levels (120, 130, $140^{\circ}C$). Determination coefficients for the relationship between apparent shear stress ($\tau_{ap}$) and apparent shear velocity ($\gamma_{ap}$) were relatively high in the range of 0.973 ~ 0.997 under each extrusion condition. The values of consistency index (K) was decreased with increasing moisture content and extrusion temperature. However, the value of flow behavior index (n) presented the highest value at moisture content of 35%, but it was not affected by extrusion temperature.

초음파공명분광법에 의한 Zr-2.5Nb 압력관 재료의 고온 이방성 탄성계수 측정 (Measurement of High Temperature Anisotropic Elastic Constants of Zr-2.5Nb Pressure Tube Materials by Resonant Ultrasound Spectroscopy)

  • 정용무;김성수;김영석
    • 비파괴검사학회지
    • /
    • 제22권2호
    • /
    • pp.140-148
    • /
    • 2002
  • 중수로 압력관으로 사용되는 Zr-2.5Nb 재료의 고온 이방성 탄성계수를 고온 초음파공명분광법(RUS)로 측정하였다. 소형 가열로 내에 알루미나 waveguide와 광대역 초음파 센서를 사용하여 초음파에너지를 시편에 가하고 시편의 공명주파수를 측정하였다. 압력관의 축 방향, 반경 방향, 원주 방향에 일치하도록 장방형 시편을 가공하였으며 각 방향에 대한 탄성계수 텐서 9개의 값을 상온${\sim}500^{\circ}C$ 온도 구간에서 측정하였다. 탄생계수 텐서, $c_{ij}$는 모두 온도가 증가함에 따라 점진적으로 감소하며 원주 방향의 탄성계수가 축 방향 및 반경 방향의 탄성계수보다 높았다. 이것은 Young's modulus나 shear modulus의 경우에도 일치하였으며 축 방향과 반경 방향의 경우 큰 차이를 나타내지 않았다. 축 방향 및 반경 방향의 비틀림 탄생계수가 $150^{\circ}C$ 부근에서 서로 교차하였으며 이는 단결정 지르코늄의 $c_{44}$$c_{66}$의 교차 현상과 일치하였다.