• 제목/요약/키워드: high temperature gas-cooled reactor

검색결과 91건 처리시간 0.026초

수소생산시설에서의 수소폭발의 안전성평가 방법론 연구 (A Study on Methodology of Assessment for Hydrogen Explosion in Hydrogen Production Facility)

  • 제무성;정건효;이현우;이원재;한석중
    • 한국수소및신에너지학회논문집
    • /
    • 제19권3호
    • /
    • pp.239-247
    • /
    • 2008
  • Hydrogen production facility using very high temperature gas cooled reactor lies in situation of high temperature and corrosion which makes hydrogen release easily. In that case of hydrogen release, there lies a danger of explosion. However, from the point of thermal-hydraulics view, the long distance of them makes lower efficiency result. In this study, therefore, outlines of hydrogen production using nuclear energy are researched. Several methods for analyzing the effects of hydrogen explosion upon high temperature gas cooled reactor are reviewed. Reliability physics model which is appropriate for assessment is used. Using this model, leakage probability, rupture probability and structure failure probability of very high temperature gas cooled reactor are evaluated and classified by detonation volume and distance. Also based on standard safety criteria which is value of $1{\times}10^{-6}$, safety distance between the very high temperature gas cooled reactor and the hydrogen production facility is calculated.

페블 베드 타입 고온 가스 냉각 원자로 내부 유동장 측정 (Measurement of Flow Field in the Pebble Bed Type High Temperature Gas-cooled Reactor)

  • 이사야;이재영
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2008년도 추계학술대회B
    • /
    • pp.2088-2093
    • /
    • 2008
  • In this study, flow field measurement of the Pebble Bed Reactor(PBR) for the High Temperature Gas-cooled Reactor(HTGR) was performed. Large number of pebbles in the core of PBR provides complicated flow channel. Due to the complicated geometries, numerical analysis has been intensively made rather than experimental observation. However, the justification of computational simulation by the experimental study is crucial to develop solid analysis of design method. In the present study, a wind tunnel installed with pebbles stacked was constructed and equipped with the Particle Image Velocimetry(PIV). We designed the system scaled up to realize the room temperature condition according to the similarity. The PIV observation gave us stagnation points, low speed region so that the suspected high temperature region can be identified. With the further supplementary experimental works, the present system may produce valuable data to justify the Computational Fluid Dynamics(CFD) simulation method.

  • PDF

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • 제37권6호
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

U.S. GENERATION IV REACTOR INTEGRATED MATERIALS TECHNOLOGY PROGRAM

  • Corwin William R.
    • Nuclear Engineering and Technology
    • /
    • 제38권7호
    • /
    • pp.591-618
    • /
    • 2006
  • An integrated R&D program is being conducted to study, qualify, and in some cases, develop materials with required properties for the reactor systems being developed as part the U.S. Department of Energy's Generation IV Reactor Program. The goal of the program is to ensure that the materials research and development (R&D) needed to support Gen IV applications will comprise a comprehensive and integrated effort to identify and provide the materials data and its interpretation needed for the design and construction of the selected advanced reactor concepts. The major materials issues for the five primary systems that have been considered within the U.S. Gen IV Reactor Program-very high temperature gas-cooled, supercritical water-cooled, gas-cooled fast spectrum, lead-cooled fast spectrum, and sodium-cooled fast spectrum reactors-are described along with the R&D that has been identified to address them.

Experimental research on vertical mechanical performance of embedded through-penetrating steel-concrete composite joint in high-temperature gas-cooled reactor pebble-bed module

  • Zhang, Peiyao;Guo, Quanquan;Pang, Sen;Sun, Yunlun;Chen, Yan
    • Nuclear Engineering and Technology
    • /
    • 제54권1호
    • /
    • pp.357-373
    • /
    • 2022
  • The high-temperature gas-cooled reactor pebble-bed module project is the first commercial Generation-IV NPP(Nuclear Power Plant) in China. A new joint is used for the vertical support of RPV(Reactor Pressure Vessel). The steel corbel is integrally embedded into the reactor-cabin wall through eight asymmetrically arranged pre-stressed high-strength bolts, achieving the different path transmission of shear force and moment. The vertical monotonic loading test of two specimens is conducted. The results show that the failure mode of the joint is bolt fracture. There is no prominent yield stage in the whole loading process. The stress of bolts is linearly distributed along the height of corbel at initial loading. As the load increases, the height of neutral axis of bolts gradually decreases. The upper and lower edges of the wall opening contact the corbel plate to restrict the rotation of the corbel. During the loading, the pre-stress of some bolts decreases. The increase of the pre-stress strength ratio of bolts has no noticeable effect on the structure stiffness, but it reduces the ultimate bearing capacity of the joint. A simplified calculation model for the elastic stage of the joint is established, and the estimation results are in good agreement with the experimental results.

소듐냉각 고속로의 커버가스 영역에서 열유동 해석 (ANALYSIS OF HEAT TRANSFER AND FLUID FLOW IN THE COVER GAS REGION OF SODIUM-COOLED FAST REACTOR)

  • 이태호;김성오;한도희
    • 한국전산유체공학회지
    • /
    • 제13권3호
    • /
    • pp.21-27
    • /
    • 2008
  • The reactor head of a sodium-cooled fast reactor KALIMER-600 should be cooled during the reactor operation in order to maintain the integrity of sealing material and to prevent a creep fatigue. Analyzing turbulent natural convection flow in the cover gas region of reactor vessel with the commercial CFD code CFX10.0, the cooling requirement for the reactor head and the performance of the insulation plate were assessed. The results showed that the high temperature region around reactor vessel was caused by the convective heat transfer of Helium gas flow ascending the gap between the insulation plate and the reactor vessel inner wall. The insulation plate was shown to sufficiently block the radiative heat transfer from pool surface to reactor head to a satisfactory degree. More than $32.5m^3$/sec of cooling air flow rate was predicted to maintain the required temperature of reactor head.

ASSESSMENT OF A NEW DESIGN FOR A REACTOR CAVITY COOLING SYSTEM IN A VERY HIGH TEMPERATURE GAS-COOLED REACTOR

  • PARK GOON-CHERL;CHO YUN-JE;CHO HYOUNGKYU
    • Nuclear Engineering and Technology
    • /
    • 제38권1호
    • /
    • pp.45-60
    • /
    • 2006
  • Presently, the VHTGR (Very High Temperature Gas-cooled Reactor) is considered the most attractive candidate for a GEN-IV reactor to produce hydrogen, which will be a key resource for future energy production. A new concept for a reactor cavity cooling system (RCCS), a critical safety feature in the VHTGR, is proposed in the present study. The proposed RCCS consists of passive water pool and active air cooling systems. These are employed to overcome the poor cooling capability of the air-cooled RCCS and the complex cavity structures of the water-cooled RCCS. In order to estimate the licensibility of the proposed design, its performance and integrity were tested experimentally with a reduced-scale mock-up facility, as well as with a separate-effect test facility (SET) for the 1/4 water pool of the RCCS-SNU to examine the heat transfer and pressure drop and code capability. This paper presents the test results for SET and validation of MARS-GCR, a system code for the safety analysis of a HTGR. In addition, CFX5.7, a computational fluid dynamics code, was also used for the code-to-code benchmark of MARS-GCR. From the present experimental and numerical studies, the efficacy of MARS-GCR in application to determining the optimal design of complicated systems such as a RCCS and evaluation of their feasibility has been validated.

원자력의 고온 핵열을 이용한 열화학적 수소제조 프로세스에의 분리막 기술의 응용 (Application of the Membrane Technology in Thermochemical Hydrogen Production Process using High Temperature Nuclear Heat)

  • 황갑진;박주식;이상호;최호상
    • 한국막학회:학술대회논문집
    • /
    • 한국막학회 2003년도 추계 총회 및 학술발표회
    • /
    • pp.25-33
    • /
    • 2003
  • 원자력 발전의 고온 가스로(high temperature gas-cooled reactor, HTGR)의 냉각제로 사용되는 He가스의 폐열에너지를 이용하여 물을 분해해서 수소를 생산하는 “열화학적 수소제조 IS프로세스”에서의 분리막 기술의 응용에 대해 정리하였다. 고온 원자력 열에너지를 이용한 열화학적 수소 제조법은 실현 가능한 단계까지 왔다고 생각되며, 아직 연구 개발 과제가 많이 남아 있지만, 미래의 청정에너지 중의 하나인 수소를 대량 생산할 수 있는 가능성을 갖고 있다.

  • PDF

원자력 극한환경용 세라믹 열교환기 소재로서 반응소결 SiC 세라믹스 제작성 (Fabricability of Reaction-sintered SiC for Ceramic Heat Exchanger Operated in a Severe Environment)

  • 정충환;박지연
    • 한국세라믹학회지
    • /
    • 제48권1호
    • /
    • pp.52-56
    • /
    • 2011
  • Silicon carbide (SiC) is a candidate material for heat exchangers for VHTR (Very High Temperature Gas Cooled Reactor) due to its refractory nature and high thermal conductivity. This research has focused on demonstration of physical properties and mock-up fabrication for the future heat exchange applications. It was found that the SiC-based components can be applied for process heat exchanger (PHE) and intermediate heat exchanger (IHX), which are operated at $400{\sim}1000^{\circ}C$, based on our examination for the following aspects: optimum fabrication technologies (design, machining and bonding) for compact design, thermal conductivity, corrosion resistance in sulfuric acid environment at high temperature, and simulation results on heat transferring and thermal stress distribution of heat exchanger mock-up.

원자력 발전소에 대한 밀폐 ${CO}_{2}$ 가스터빈 프로세스의 최적화 연구 I (A Study on the Optimum of Closed ${CO}_{2}$ Gas Turbine Process for Nuclear Energy Power Plant(I))

  • 이찬규;이종원
    • 대한기계학회논문집
    • /
    • 제13권3호
    • /
    • pp.490-499
    • /
    • 1989
  • 본 연구에서의 CO$_{2}$ 프로세스는 1차 루프인 원자로에서 유도되는 나트륨 과 2차 루프인 CO$_{2}$ 가스터빈 사이클로 구성하였고, CO$_{2}$ 임계점 부근에서 압축을 행하였다. 또한 최적의 사이클을 결정하기 위해 h-s 선도와 이에 대한 열역 학적, 칼로리로 유도하였다. 그리고 최적화를 위해 출력을 각각 300,600, 1000MWe로 선택하였고, 터빈 입구압은 150-350bar의 범위로 선택하였으며 이들로부터 열효율에 영향을 주는 각 설계변수의 특성을 연구 분석하였다.