• Title/Summary/Keyword: high temperature degradation

Search Result 857, Processing Time 0.04 seconds

Study on Degradation Characteristic of Plastic Artwork for Conservation (플라스틱 작품 보존을 위한 열화 특성 연구)

  • Yu, Ji A;Cho, Ha Jin;Han, Ye Bin;Lee, Hyun Ju;Lee, Sang Jin;Chung, Yong Jae
    • Journal of Conservation Science
    • /
    • v.31 no.2
    • /
    • pp.87-94
    • /
    • 2015
  • Plastic artwork can be appeared crack, change of color and whitening event by various environment conditions. A large scale plastic artwork often exhibits in outside it will be directly degraded by physical and chemical degradation factor such as strong sunlight, high humidity and rainfall. We should know degradation characteristic of plastics to prevent these damages. In this study, we studied degradation characteristic of plastics (5 types of wide use plastics; polypropylene, polystyrene, polyethylene, polyvinyl chloride, polyurethane) depending on various artificial degradation conditions such as high temperature, ultraviolet and these complex conditions (high temperature and ultraviolet). As a result, polypropylene, polystyrene and polyethylene show the most visible change especially polypropylene, polystyrene. Polypropylene didn't show a great change degree of tensile strength and contact angle, on the other hand polystyrene did. Polypropylene and polystyrene weakened by photo degradation, polyvinyl chloride and polyurethane had relatively good light stability. Also the high temperature and complex conditions were most degradation characteristic. High temperature worked for degradation catalyst because its energy can not enough worked for cut off binding energy of plastics while ultraviolet condition effected as directly degradation condition. Though following results, we expect it can be applied to investigation of degradation factor depending on plastic artwork materials and basic result of plastic artworks conservation.

Analysis of Positive Bias Temperature Instability Degradation Mechanism in n+ and p+ poly-Si Gates of High-Voltage SiO2 Dielectric nMOSFETs (고전압 SiO2 절연층 nMOSFET n+ 및 p+ poly Si 게이트에서의 Positive Bias Temperature Instability 열화 메커니즘 분석)

  • Yeohyeok Yun
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.16 no.4
    • /
    • pp.180-186
    • /
    • 2023
  • Positive bias temperature instability (PBTI) degradation of n+ and p+ poly-Si gate high-voltage(HV) SiO2 dielectric nMOSFETs was investigated. Unlike the expectation that degradation of n+/nMOSFET will be greater than p+/nMOSFET owing to the oxide electric field caused by the gate material difference, the magnitude of the PBTI degradation was greater for the p+/nMOSFET than for the n+/nMOSFET. To analyze the cause, the interface state and oxide charge were extracted for each case, respectively. Also, the carrier injection and trapping mechanism were analyzed using the carrier separation method. As a result, it has been verified that hole injection and trapping by the p+ poly-Si gate accelerates the degradation of p+/nMOSFET. The carrier injection and trapping processes of the n+ and p+ poly-Si gate high-voltage nMOSFETs in PBTI are detailed in this paper.

Critical Current Degradation Characteristics by Temperature Difference of L$N_2$-Normal in Repetitive Bending Strain of High Temperature Superconducting Tape (고온 초전도 선재의 굽힘횟수와 온도차에 의한 임계전류저하특성)

  • 김해준;김석환;송규정;김해종;배준한;조전욱;성기철
    • Proceedings of the Korea Institute of Applied Superconductivity and Cryogenics Conference
    • /
    • 2003.10a
    • /
    • pp.274-277
    • /
    • 2003
  • Critical current(Ic) degradation of HTS tapes after bending is one of the hottest issues in HTS development and application studies. Many people are measuring Ic degradations for effect of bending radius. However even if the bending radius is larger than the breaking radius a HTS tapes can be damaged by repetitive bending, which is unavoidable in the winding processes. Therefore, We studied the Ic degradation after repetitive bending. at 77K with self-field, of Bi-2223 tapes processed by "Powder-in-Tube" technique, which was made by America Superconductor Corporation(AMSC) and superconductiing tapes that strain is imposed measured critical current by temperature difference of L$N_2$ and normal temperature. Like this, critical current could measure that degradation about 1~3% by temperature difference. These results will amount the most important basis data in power electric machine of superconductivity cable, magnet, etc that winding work is require.

  • PDF

State-of-Arts of Primary Concrete Degradation Behaviors due to High Temperature and Radiation in Spent Fuel Dry Storage (사용후핵연료 건식저장 콘크리트의 고열과 방사선으로 인한 주요 열화거동 분석)

  • Kim, Jin-Seop;Kook, Donghak;Choi, Jong-Won;Kim, Geon-Young
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.16 no.2
    • /
    • pp.243-260
    • /
    • 2018
  • A literature review on the effects of high temperature and radiation on radiation shielding concrete in Spent Fuel Dry Storage is presented in this study with a focus on concrete degradation. The general threshold is $95^{\circ}C$ for preventing long-term degradation from high temperature, and it is suggested that the temperature gradient should be less than $60^{\circ}C$ to avoid crack generation in concrete structures. The amount of damage depends on the characteristics of the concrete mixture, and increases with the temperature and exposure time. The tensile strength of concrete is more susceptible than the compressive strength to degradation due to high temperature. Nuclear heating from radiation can be neglected under an incident energy flux density of $10^{10}MeV{\cdot}cm^{-2}{\cdot}s^{-1}$. Neutron radiation of >$10^{19}n{\cdot}cm^{-2}$ or an integrated dose of gamma radiation exceeding $10^{10}$ rads can cause a reduction in the compressive and tensile strengths and the elastic moduli. When concrete is highly irradiated, changes in the mechanical properties are primarily caused by variation in water content resulting from high temperature, volume expansion, and crack generation. It is necessary to fully utilize previous research for effective technology development and licensing of a Korean dry storage system. This study can serve as important baseline data for developing domestic technology with regard to concrete casks of an SF (Spent Fuel) dry storage system.

Evaluation of Degradation Behavior of the Long-Term Serviced Boiler Header (장기 사용 보일러 헤더의 열화거동 평가에 관한 연구)

  • Gwon, Jae-Do;Bae, Yong-Tak;Choe, Seong-Jong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.24 no.7 s.178
    • /
    • pp.1673-1680
    • /
    • 2000
  • The degradation of a boiler header constructed by a material, 1Cr-0.5Mo steel in a fossil power plant is observed when the header is exposed for a long period to the high temperature and pressure. The present investigations are for evaluating the effect of the degradation on the material, such as its strength changes. Reheat-treated metal is used to compare the mechanical properties of the degraded and that of reheat-treated materials. Through the investigation, following results are obtained 1) the area ratio of ferrite in the reheat-treated material is larger than that of the degraded material, 2) the hardness and tensile strength of the degraded material are lower than that of the reheat-treated material, 3) the ductile-brittle transition temperature(DBTT) increased toward high temperature region, 4) the fatigue crack growth rate(FCGR) of the degraded material is higher than that of the reheat-treated material in the region of low ΔK value while FCGR of the both materials are similar in high ΔK region.

Degradation Quantification Method and Degradation and Creep Life Prediction Method for Nickel-Based Superalloys Based on Bayesian Inference (베이지안 추론 기반 니켈기 초합금의 열화도 정량화 방법과 열화도 및 크리프 수명 예측의 방법)

  • Junsang, Yu;Hayoung, Oh
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.27 no.1
    • /
    • pp.15-26
    • /
    • 2023
  • The purpose of this study is to determine the artificial intelligence-based degradation index from the image of the cross-section of the microstructure taken with a scanning electron microscope of the specimen obtained by the creep test of DA-5161 SX, a nickel-based superalloy used as a material for high-temperature parts. It proposes a new method of quantification and proposes a model that predicts degradation based on Bayesian inference without destroying components of high-temperature parts of operating equipment and a creep life prediction model that predicts Larson-Miller Parameter (LMP). It is proposed that the new degradation indexing method that infers a consistent representative value from a small amount of images based on the geometrical characteristics of the gamma prime phase, a nickel-base superalloy microstructure, and the prediction method of degradation index and LMP with information on the environmental conditions of the material without destroying high-temperature parts.

Evaluation of Failure Mechanism of Flexible CIGS Solar Cell Exposed to High Temperature and Humid Atmosphere (플렉서블 CIGS 태양전지의 고온고습 환경 고장 기구 분석)

  • Kim, Hyeok-Soo;Byeon, Jai-Won
    • Journal of Applied Reliability
    • /
    • v.16 no.1
    • /
    • pp.41-47
    • /
    • 2016
  • Purpose: The purpose of this study was to evaluate electrical and structural degradation of flexible CIGS sollar cell exposed to high temperature and humid atmosphere. Method: Accelerated degradation was performed for various time under $85^{\circ}C/85%RH$ and then electrical and structural properties were analyzed by 4-point probe method, scanning electron microscopy (SEM), energy dispersive spectroscopy (EDS), and X-ray diffraction (XRD). Results: Sheet resistance of the top ITO layer increased with exposure time to the high temperature and humid atmosphere. Blunting of the protrusion morphology of ITO layer was observed for the degraded specimen, while no phase change was detected by XRD. Oxygen was detected at the edge area after 300 hours of exposure. Conclusion: Increase in electrical resistance of the degraded CIGS solar cell under high temperature and humid environment was attribute to the oxygen or water absorption.

Assessment of Degradation Rate Coefficient and Temperature Correction Factor by Seasonal Variation of Concentration and Temperature in Livestock Wastewater Treatment in Field Scale (현장수준의 축산폐수처리에 있어서 계절별 농도 및 온도변화에 따른 분해반응계수 및 온도보정계수의 산정)

  • 박석환
    • Journal of Environmental Health Sciences
    • /
    • v.22 no.2
    • /
    • pp.90-95
    • /
    • 1996
  • This study was performed to calculate the degration rate coefficient, operating parameters to meet the effluent standards, and the temperature adjustment coefficients to each parameter of pollution by seasonal variation of concentration and temperature of influent in livestock wastewater treatment by sequencing batch reactor process in field scale. The followings are the conclusions that were derived from this study. 1. In the field, temperature of livestock wastewater in reactor was 20.3$\circ$C in summer and 6.0$\circ$C in winter. The ratio of BOD:TKN: T-P in influent was 100:80:7. BOD loadings in winter and spring were 0.26 and 0.43 kg $BOD/m^3$ day, respectively. Those in summer and fall were 0.25 and 0.13 kg $BOD/m^3$ day, respectively. 2. The degradation rate coefficient for TKN was larger in summer and fall in which temperature was high than that in which temperature was high than that in winter and spring in which concentration was high. On the contrary, the phosphorus uptake rate was larger in winter and spring than that in summer and fall. 3. The hydraulic retention time in winter and spring was longer than that in summer and fall. Especially, in order to meet the standard for TKN of 120 mg/l in winter in which temperature of wastewater was 6.0$\circ$C, as the MLSS concentration was increased from 4, 000 to 7, 000 mg/l, the hydraulic retention time was increased from 212 to 121 hours. But, in order to shorten that less than 121 hours for the economical wastewater treatment, countermeasure to increase temperature of wastewater in the reactor should be considered. 4. the temperature adjustment coefficients for BOD, $COD_{Mn}$, TKN and T-P were 1.0241, 1.0225, 1.0541 and 1.0495, respectively. Namely, the treatment of TKN was most sensitively affected by temperature. For the purpose of the effective removal of nitrogen and phosphorus which are sensitive to temperature, it is necessary to keep the temperature of livestock wastewater more than 20$\circ$C which is the temperature of it in summer.

  • PDF

Thermal Stability of Polypropylene-Based Wood Plastic Composites by The Addition of Ammonium Polyphosphate (폴리인산염 첨가에 의한 폴리프로필렌 기반의 Wood Plastic Composites 열안정성)

  • Chun, Sang-Jin;Lee, Sun-Young
    • Journal of the Korean Wood Science and Technology
    • /
    • v.42 no.6
    • /
    • pp.682-690
    • /
    • 2014
  • In order to improve the thermal stability of wood plastic composites (WPC), thermal degradation behavior of WPC in this study was investigated by the addition of wood flour and fire retardant after hybridization of wood flour and ammonium polyphosphate (APP) into polypropylene (PP) matrix. Thermal degradation behavior of all formulations was analyzed with thermogravimetric analyzer under nitrogen environment at heating rate of $10^{\circ}C/min$. As the thermal degradation temperature of wood flour is lower than that of PP, char layer formed by the wood flour decreases the speed of heat transfer to PP. In addition, the char layer increases the 2nd thermal degradation temperature and decreases the 2nd thermal degradation speed. The WPC treated with APP increases the 1st and 2nd degradation temperatures. In the case of WPC with high loading level of wood flour, the 1st thermal degradation temperature and 2nd thermal degradation rate were increased by the addition of APP, and then the amount of remnants at high temperature was increased by the increase of the APP loading level. In the case of WPC treated with APP, the amount of the remnants at high temperature was increased with the increase of wood flour content from 10 wt% to 50 wt%, indicating that char formation of the APP and wood flour occurred at the same time, resulting in high thermal stability effect by the increase of wood flour content.

Effect of thermal conductivity degradation on the behavior of high burnup $UO_2$ fuel

  • Lee, Byung-Ho;Koo, Yang-Hyun;Sohn, Dong-Seong
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1996.05c
    • /
    • pp.265-270
    • /
    • 1996
  • The temperature distribution in the pellet was obtained from beginning the general heat conduction equation. The thermal conductivity of pellet used the SIMFUEL data that made clear the effect of burnup on the thermal conductivity degradation. Since the pellet rim acts as the thermal barrier to heat flow. the pellet was subdivided into several rings in which the outer ring was adjusted to play almost the same role as the rim. The local burup in each ring except the outer ring was calculated from the power depression factor based on FASER results. whereas the rim burnup at the outer ring was achieved by the pellet averaged burnup based on the empirical relation. The rim changed to the equivalent Xe film so the predicted temperature shooed the thermal jump across the rim. The observed temperature profiles depended on linear heat generation rate. fuel burnup. and power depression factor. The thermal conductivity degradation modelling can be applied to the fuel performance code to high burnup fuel,

  • PDF