• Title/Summary/Keyword: high temperature X-ray diffraction

Search Result 840, Processing Time 0.043 seconds

Characterization of Crystal Structure for Nanosized Noble Metal Particles Fabricated by ERC(Evaporation and Rapid Condensation) Method (증기급속응축법 제조 귀금속 나노분말의 결정학적 특성 연구)

  • Yu, Yeon-Tae
    • Korean Journal of Materials Research
    • /
    • v.13 no.5
    • /
    • pp.285-291
    • /
    • 2003
  • The nanosized silver and gold particles are prepared by ERC method in which metal vapors with high temperature is rapidly quenched by coolants such as liquid nitrogen or liquid argon. In order to monitor the crystal structural changes on the internal and the surface of the nanosized noble metal particles, lattice parameter, internal strain and Debye-Waller factor are investigated, and the calculation of X-ray diffraction scattering intensity is performed. The lattice parameters of silver and gold particles agree with those of bulk materials, and crystal internal strain of the metal particles is not changed by rapid cooling. The Debye-Waller factor of gold particles is increased with decreasing particle size because of the surface softening phenomenon of nanosized particles, but the crystal structural change on the surface of the particles is not detected from the comparison the calculated X-ray diffraction profile with the experimental profile on gold particles with the particle size of 4 nm.

Crystallographic properties of AIN thin film prepared by lacing targets sputtering method (대향타겟식 스퍼터법으로 제작된 AIN 박막의 결정학적 특성)

  • 양진석;금민종;손인환;최형욱;김경환
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.07a
    • /
    • pp.464-466
    • /
    • 2000
  • AIN thin films have been prepared by reactive sputtering method, using facing targets sputtering system with a DC power supply which can deposit a high quality thin film and control deposition condition in all range of nitrogen. The crystallographic characteristics of AIN thin films on N$_2$/Ar ratio was investigated by alpha-step and X-ray diffraction. As a result, the AIN film deposited at the pressure ratio of the nitrogen of 30% revealed strong X-ray diffraction intensity under substrate temperature 25$^{\circ}C$ and applied current 0.4A.

  • PDF

Copper, aluminum based metallization for display applications (표시소자 응용을 위한 copper, aluminum 박막의 성장과 특성)

  • 김형택;배선기
    • Electrical & Electronic Materials
    • /
    • v.8 no.3
    • /
    • pp.340-351
    • /
    • 1995
  • Electrical, physical and optical properties of Aluminum(Al), Copper(Cu) thin films were investigated in order to establish the optimum sputtering parameters in Liquid Crystal Display (LCD) panel applications. DC-magnetron sputtered film on coming 7059 samples were fabricated with variations of deposition power densities, deposition pressures and substrate temperatures. Low resistivity films(AI;2.80 .mu..ohm.-cm, Cu:1.84 .mu..ohm-cm),which lower than the reported values, were obtained under sputtering parameters of power density(250W), substrate temperature(450-530.deg. C) and 5*10$\^$-3/ Torr deposition pressure. Expected columnar growth and stable grain growth of both films was observed through the Scanning Electron Microscope(SEM) micrographs. Dependency of the applicable defect-free film density upon depositon power and temperature was also characterized. Not too noticable variations in X-ray diffraction patterns were remarked under the alterations of sputtering parameters. High optical reflectivities of Al, Cu films, approximately 70-90 %, showed high degree of surface flatness.

  • PDF

Impacts of the calcination temperature on the structural and radiation shielding properties of the NASICON compound synthesized from zircon minerals

  • Islam G. Alhindawy;Hany Gamal;Aljawhara.H. Almuqrin;M.I. Sayyed;K.A. Mahmoud
    • Nuclear Engineering and Technology
    • /
    • v.55 no.5
    • /
    • pp.1885-1891
    • /
    • 2023
  • The present work aims to fabricate Na1+xZr2SixP3-xO12 compound at various calcination temperatures based on the zircon mineral. The fabricated compound was calcinated at 250, 500, and 1000℃. The effect of calcination temperature on the structure, crystal phase, and radiation shielding properties was studied for the fabricated compound. The X-ray diffraction diffractometer demonstrates that, the monoclinic crystal phase appeared at a calcination temperature of 250℃ and 500℃ is totally transformed to a high-symmetry hexagonal crystal phase under a calcination temperature of 1000℃. The radiation shielding capacity was also qualified for the fabricated compounds using the Monte Carlo N-Particle transport code in the g-photons energy interval between 15keV and 122keV. The impacts of calcination temperature on the g-ray shielding behavior were clarified in the present study, where the linear attenuation coefficient was enhanced by 218% at energy of 122keV, when the calcination temperature increased from 250 to 1000℃, respectively.

Peculiarities of SHS and solid state synthesis of $ReBa_{2}Cu_{3}O_{7-x}$ materials

  • Sho, Dea-Wha;Li, Yingmei;Cho, Yong-Joon;Kim, Tae-Wan;Korobova, N.;Isaikina, O.;Mansurov, Z.;Baydeldinova, A.;Ksandopoulo, G.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.07a
    • /
    • pp.620-623
    • /
    • 2001
  • The peculiarities of using Self-propagating High-temperature Synthesis (SHS) and solid state phase synthesis for production of high temperature superconductor materials are discussed. Oxide superconductors with general formula $ReBa_2$$Cu_3$$O_{7-x}$ (Re= Y, Yb, Sm, Nd) have been made with using barium oxide initial powder instead of traditional barium carbonate. X-ray powder diffraction showed a single phase orthorhombic perovskite structure was produced in all reactions. Phenomena observed during the grinding of the reactant mixture are presented. Mechano-chemical activation - as a pretreatment of the reactant mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product.

  • PDF

High Pressure Phase Transition Study of ${\alpha}$-cristobalite $GaPO_4$ (${\alpha}$-크리스토발라이트 구조의 $GaPO_4$에 대한 고압 상변이 연구)

  • Hwang, Gil-Chan;Kim, Young-Ho
    • Journal of the Mineralogical Society of Korea
    • /
    • v.23 no.3
    • /
    • pp.267-272
    • /
    • 2010
  • High pressure x-ray diffraction patterns of ${\alpha}$-cristobalite gallium phosphate ($GaPO_4$) were acquired up to 8.9 GPa at room temperature using Mao-Bell type diamond anvil cell with high flux synchrotron radiation. Starting orthorhombic phase (phase-I) shows the splitting of peak which is possibly resulted from the pressure induced orientation disorder of the framework structure of tetrahedra. This is designated as phase-I'. This phase transforms to the orthorhombic high pressure phase-III between 2 and 3 GPa. Present phase transition sequence is not in accord with the recent high pressure X-ray diffraction results performed on the same starting sample (Ming et al., 2007). X-ray pattern of the unloaded sample to ambient pressure shows that the structure retains that of the high pressure phase prior to decompression.

Effect of Acid Leaching Conditions on the Properties of Cr Powder Produced by Self-propagating High-temperature Synthesis (자전연소합성법을 이용한 Cr 분말 제조시 산세조건에 따른 물성평가)

  • YongKwan Lee;YeongWoo Cho;ShinYoung Choi;SungGue Heo;Ju Won;KyoungTae Park;MiHye Lee;JaeJin Sim
    • Journal of Powder Materials
    • /
    • v.30 no.3
    • /
    • pp.233-241
    • /
    • 2023
  • In this study, we evaluated the effects of acid leaching on the properties of Cr powder synthesized using self-propagating high-temperature synthesis (SHS). Cr powder was synthesized from a mixture of Cr2O3 and magnesium (Mg) powders using the SHS Process, and the byproducts after the reaction were removed using acid leaching. The properties of the recovered Cr powder were analyzed via X-ray diffraction (XRD), scanning electron microscopy (SEM), energy-dispersive X-ray spectroscopy (EDS), particle size analysis (PSA), and oxygen content analysis. The results show that perfect selective leaching of Cr is challenging because of various factors such as incomplete reaction, reaction kinetics, the presence of impurities, and incompatibility between the acid and metal mixture. Therefore, this study provides essential information on the properties under acidic conditions during the production of high-quality Cr powder using a self-propagating high-temperature synthesis method.

Development of Sample Environment at High Temperature for the four Circle Diffractometer at HANARO: Structural Study of $LiTaO_3$ at Room and High Temperatures (하나로 4축 단결정 회절장치용 고온시료환경장치의 개발: $LiTaO_3$의 상온 및 고온 구조 연구)

  • 김신애;성기훈;이창희
    • Journal of the Mineralogical Society of Korea
    • /
    • v.15 no.2
    • /
    • pp.140-144
    • /
    • 2002
  • The sample environment at high temperature for the four circle diffractometer at HANARO in Korea Atomic Energy Research Institute is developed. The performance test was carried out for a structurally known sample through the high temperature experiment with this equipment. In this study we found out that the developed sample environment is stable for a long time experiment at over 900 K. By the neutron diffraction from a single crystal of $LiTaO_3$(phase transition temperature about 900 K) at 298 and 913 K, the lithium atomic positions at both temperatures and disordered state of lithium atom at high temperature were confirmed. These are hardly possible to determine by the conventional X-ray diffraction method.

Electrical and structure properties of W ohmic contacts to InGaN (W/InGaN Ohmic 접촉의 전기적 구조적 특성연구)

  • Han-Ki Kim;Tae-Yeon Seong
    • Proceedings of the Materials Research Society of Korea Conference
    • /
    • 1999.11a
    • /
    • pp.76-76
    • /
    • 1999
  • Low resistance ohmic contacts to the Si-doped InGaN(~$\times$10$^{19}$ ㎤) were obtained using the W metallization schemes. Specific contact resistance decreased with increasing annealing temperature. The lowest resistance is obtained after a nitrogen ambient annealing at 95$0^{\circ}C$ for 90s, which results in a specific contact resistance of 2.75$\times$10$^{-8}$$\textrm{cm}^2$. Interfacial reactions and surface are analyzed using x-ray diffraction, transmission electron microscopy (TEM) and scanning electron microscopy (SEM). The X-ray diffraction results show that the reactions between the W film and the InGaN produce a $\beta$-W$_2$N phase at the interface. TEM results also show that the $\beta$-W$_2$N has a rough interface, which increase contact area. It shows that the morphology of the contacts is stable up to a temperature as high as 95$0^{\circ}C$. Possible mechanisms are proposed to describe the annealing temperature dependence of the specific contact resistance.

  • PDF

Fabrication of ZnO Nanostructures with Various Growth Conditions by Vapor Phase Transport

  • Kim, So-A-Ram;Nam, Gi-Woong;Kim, Min-Su;Yim, Kwang-Gug;Kim, Do-Yeob; Leem, Jae-Youn
    • Proceedings of the Korean Vacuum Society Conference
    • /
    • 2011.08a
    • /
    • pp.250-250
    • /
    • 2011
  • Zinc oxide (ZnO) structures have great potential in many applications. Currently, the most commonly used method to grow ZnO nanostructres are the vapor transport method (VPT). The morphology of the ZnO structures largely related to the growth conditions, including growth temperature, distance between the substrate and source, and gas ambient. Previously ZnO nanosturecutres with high crystallinity were obtained at the growth temperature of 800$^{\circ}C$, in the argon and oxygen gas ambient. In this study, we report the properties of the ZnO nanostructures, which were synthesized on Au-catalyzed Si substrate by VPT, using a mixture of ZnO and graphite powders as source material under the different condition, including gas ratio of argon/oxygen and distance between substrate and source at the growth temperature of 800$^{\circ}C$. The structural and optical properties of the ZnO nanostructures were investigated by field-emission scanning electron microscopy (FE-SEM), X-ray diffraction (XRD), and photoluminescence (PL).

  • PDF