• Title/Summary/Keyword: high temperature $\beta$ phase

Search Result 134, Processing Time 0.025 seconds

등축정 Ti-6Al-4V 합금의 $\alpha,\;\beta$ 구성상의 고온변형거동 규명 (High temperature deformation behavior of $\alpha\;and\;\beta$ phase of Ti-6Al-4V alloy with an equiaxed microstructure)

  • 이유환;염종택;박노광;이종수;김정한
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2005년도 춘계학술대회 논문집
    • /
    • pp.295-298
    • /
    • 2005
  • High temperature deformation behavior of $\alpha\;and\;\beta$ phase of Ti-6Al-4V was investigated within the framework of a self-consistent approach at various temperature ranges. To examine the flow behavior of u-phase, Ti-7.0Al-1.5V alloy was used, whose chemical composition is close to that of the $\alpha$ phase in Ti-6Al-4V at hot working temperatures. The flow stress of $\beta$ phase was predicted by using self-consistent approach. The flow stress of $\alpha$ phase was higher than that of $\beta$ phase above $750^{\circ}C$, while the $\beta$ phase revealed higher flow stress than a phase at $650^{\circ}C$. It was found that the relative strength and strain rate ratio between $\alpha\;and\;\beta$ phase significantly varied with temperature. From this approach, the mode for grain matrix deformation was proposed as a mixed type of both iso-stress and iso-strain rate modes.

  • PDF

$\beta$형 Dicalcium Silicate 광물의 상 안정성 및 미세구조변화 (Microstructure and Phase Stability of $\beta$-Dicalcium Silicate)

  • 박춘근
    • 한국세라믹학회지
    • /
    • 제34권9호
    • /
    • pp.957-962
    • /
    • 1997
  • Dicalcium silicate has many polymorphs according to temperature. $\beta$-dicalcium silicate which exists in cement is stabilized by minor components drived from raw materials regardless of temperature, such as high temperature and room temperature. K2O, SO3 and B2O3 are effective stabilizers for $\beta$-dicalcium silicate at room temperature. B2O3 was the most effective stabilizer. Transformation from $\beta$ to ${\gamma}$ phase causes dicalcium silicate to change volume, resulting in dusting phenomenon. When B2O3 was used the phase transformation is the least than any other stabilizers. In addition, the starting temperature of quenching influences phases transformation : low temperature of quenching presented much phase transformation and decreased size of parameter of $\beta$-dicalcium silicate.

  • PDF

2상 타이타늄 합금의 저온/고속 초소성 (Low-temperature/high-strain rate superplasticity of two-phase titanium alloys)

  • 박찬희;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 추계학술대회 논문집
    • /
    • pp.76-79
    • /
    • 2009
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of $\alpha/\beta\;\ll\;\alpha/\alpha\;\approx\;\beta/\beta$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

  • PDF

Ti-15V-3Al합금의 시효거동과 열처리에 따른 고온 기계적 특성 (Aging Behavior and Effect of Heat Treatment on High Temperature Mechanical Properties in Ti-15V-3AI-3Cr-3Sn)

  • 이재원;이백희;이규환;김영도
    • 한국재료학회지
    • /
    • 제14권1호
    • /
    • pp.13-18
    • /
    • 2004
  • Titanium alloys are the one of promising candidate materials for medium high temperature parts in the aircraft, automobile, petrochemistry and electrochemistry because of their high strength with low density in medium high temperature. In this study, the effects of aging and heat treatments on the mechanical properties of Ti-15-3 alloy in medium high temperature, which was $400^{\circ}C$, were studied. Solid solution treatment was performed at $8000^{\circ}C$ of $\beta$ phase region for 1 h and the alloy was quenched in water. The alloy was aged at $5000^{\circ}C$ of $\alpha$ and $\beta$ two-phase region for 1, 2, 4, 8, ... and 100 h to increase the mechanical property. The $\beta$ single phase was observed at all parts of specimens in Ti-15-3 alloy after ST. As the aging at $500^{\circ}C$, fine precipitates of a phase was generated from matrix of $\beta$ phase and the microstructure was consisted of weaving structure such as Widmanstiitten a phase. The most suitable aging time is 24h in$ 400^{\circ}C$. At this time, strength is 1164 MPa and elongation is about 12%. In room temperature, elongation of Ti-15-3 alloy aged at $500^{\circ}C$ for 16 h is poor (=3%) in spite of high tensile strength (1458 MPa).

TiAl-Nb 합금의 고온상변태와 일방향응고에 관한 연구 (Study on High Temperature Phase Transformation and Directional Solidification of TiAl-Nb Alloy)

  • 박종문;장호승;김성웅;김승언;손지하;오명훈
    • 열처리공학회지
    • /
    • 제29권5호
    • /
    • pp.227-233
    • /
    • 2016
  • Phase transformation phenomenon at high temperature was investigated by using designed TiAl-Nb alloys with addition of the ${\beta}$ stabilizer. Examination of dendritic morphologies in arc-melted button ingot could reveal the crystallography of the primary solidification phase. It was found that the addition of ${\beta}$ stabilizer(Nb) shifted the high temperature region of the binary Ti-Al phase diagram to the high Al composition side so that ${\beta}$ phase forms as a primary crystal even at higher Al composition compared with the binary Ti-Al system. The ${\beta}$ was found to be the primary solidification phase for alloys with Al content less than about 52 at.%. The composition of ${\beta}$ solidification in Ti-Al-Nb ternary system could be determined from the partial liquidus projection which was constructed by observing the microstructure of arc-melted buttons. The Ti-46Al-(6, 8)Nb composition was selected for ${\beta}$ solidification and the directional solidification was performed by a floating zone-type DS apparatus at the growth rate 30 mm/hr respectively.

2상 타이타늄 합금의 미세조직 제어를 통한 초소성 특성 향상 (Enhanced Superplasticity of Two-phase Titanium Alloys by Microstructure Control)

  • 박찬희;이종수
    • 소성∙가공
    • /
    • 제19권1호
    • /
    • pp.5-10
    • /
    • 2010
  • The current understanding for phase/grain boundary sliding and low-temperature/high-strain rate superplasticity of two-phase titanium alloys is summarized. The quantitative analysis on boundary sliding revealed increased sliding resistance on the order of ${\alpha}/{\beta}\;\ll\;{\alpha}/{\alpha}\;{\approx}\;{\beta}/{\beta}$ boundary, hence, led to the conclusion that approximately 50% alpha(or beta) volume fraction and/or grain refinement is beneficial for obtaining large superplastic elongation at low temperature and/or high strain rate. To predict the temperature for 50% alpha volume in various alpha/beta Ti, artificial neural network was applied. Finally, much enhanced superplasticity was achieved through grain refinement utilizing dynamic globularization.

Analysis of the Strength Property for TiC-Mo Composites at High Temperature

  • Shin, Soon-Gi
    • 한국재료학회지
    • /
    • 제24권4호
    • /
    • pp.201-206
    • /
    • 2014
  • TiC-21 mol% Mo solid solution (${\delta}$-phase) and TiC-99 mol% Mo solid solution (${\beta}$-phase), and TiC-(80~90) mol% Mo hypo-eutectic composite were deformed by compression in a temperature range from room to 2300 K and in a strain rate range from $4.9{\times}10^{-5}$ to $6.9{\times}10^{-3}/s$. The deformation behaviors of the composites were analyzed from the strengths of the ${\delta}$- and ${\beta}$-phases. It was found that the high strength of the eutectic composite is due primarily to solution hardening of TiC by Mo, and that the ${\delta}$-phase undergoes an appreciable plastic deformation at and above 1420 K even at 0.2% plastic strain of the composite. The yield strength of the three kinds of phase up to 1420 K is quantitatively explained by the rule of mixture, where internal stresses introduced by plastic deformation are taken into account. Above 1420 K, however, the calculated yield strength was considerably larger than the measured strength. The yield stress of ${\beta}$-phase was much larger than that of pure TiC. A good linear relationship was held between the yield stress and the plastic strain rate in a double-logarithmic plot. The deformation behavior in ${\delta}$-phase was different among the three temperature ranges tested, i.e., low, intermediate and high. At an intermediate temperature, no yield drop occurred, and from the beginning the work hardening level was high. At the tested temperature, a good linear relationship was held in the double logarithmic plot of the yield stress against the plastic strain rate. The strain rate dependence of the yield stress was very weak up to 1273 K in the hypo-eutectic composite, but it became stronger as the temperature rose.

Beta-gamma TiAl 합금의 고온변형거동 (High Temperature Deformation Behavior of Beta-gamma TiAl Alloy)

  • 김지수;김영원;이종수
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2006년도 춘계학술대회 논문집
    • /
    • pp.429-433
    • /
    • 2006
  • High Temperature deformation behavior of newly developed beta-gamma TiAl alloy was investigated in this study. The optimum processing condition was investigated with the aid of Dynamic Materials Model (DMM). Processing maps representing the efficiency of power dissipation for microstructural evolution and instability were constructed utilizing the results of hot compression test at temperatures ranging from $1000^{\circ}C$ to $1200^{\circ}C$ and strain rate ranging from $10^{-4}/s$ to $10^2/s$. The Artificial Neural Network (ANN) simulation was adopted to consider the deformation heating. With the help of processing map and microstructural analysis, the optimum processing condition was presented and the role of $\beta$ phase was also discussed in this study.

  • PDF

습식방사 된 PVDF 섬유의 후 처리를 통한 결정구조의 변화 (The Effects of Post-Treatments for Wet Spun PVDF on the Piezoelectric Property)

  • 유성미;오현주;황상균;정용식;황희윤;김성수
    • Composites Research
    • /
    • 제26권2호
    • /
    • pp.123-128
    • /
    • 2013
  • PVDF(polyvinylidene fluoride) 섬유는 습식방사방법을 적용하여 제조하였다. PVDF 분자 내 압전 특성과 밀접한 관련을 갖는 ${\beta}$형태의 결정 함량을 높이기 위하여, 본 연구에서는 습식방사 된 섬유에 1단계 연신, 2단계 어닐링 공정으로 구성하여 후 처리를 도입하였다. 후 처리는 PVDF 고분자의 유리전이 온도($T_g$)와 용융온도($T_m$) 사이의 온도범위에서 진행하여, 최대의 ${\beta}$형태 결정을 생성 할 수 있는 열처리 조건을 최적화 하였다. 제조된 PVDF 섬유 내 분자 배향 특성과 결정 구조를 확인하기 위하여 적외선 분광 광도계(FT-IR)와 X선 회절 분석기(XRD)를 이용하여 분석하였으며, 전자현미경(SEM)을 통하여 섬유의 표면을 관찰하여 섬유의 평균직경을 확인하였다. 분석 결과, 후 처리 공정이 PVDF 결정 구조의 영향을 미치며, ${\beta}$형태의 결정 비율을 증가시킨다는 것을 확인하였다. 더불어 ${\beta}$형태 결정 향상으로 인해 기계적 강도가 증가되었으며, 압전 특성 향상까지 기대할 수 있었다.

시판치과주조용 고금합금의 물리적 성질 및 상변태 (Physical Property and Phase Transformation in a Commercial Dental Casting High Gold Alloy)

  • 이희경;박명호;이화식
    • 대한치과기공학회지
    • /
    • 제28권1호
    • /
    • pp.27-41
    • /
    • 2006
  • The physical property and phase transformation in a commercial dental casting high gold alloy was investigated as a function of ageing temperature and time using microvickers hardness tester, X-ray diffraction, optical and electron microscopy and EPMA analyser. 1. With increasing ageing time, the hardness of solution-treated gold alloys increased slowly at the initial stage of ageing treatment at an ageing temperature of $300{\sim}400^{\circ}C$, and it reached a maximum value of hardness at the medium stage. Finally, it decreased gradually during further ageing. The maximum value of hardness at was similar with that of the conventional materials and suitable for using as the crown & bridge. 2. During isothermal ageing at a temperature range of $300{\sim}400^{\circ}C$, three phases consisting of the Au-rich ${\alpha}_1$phase with a face-centered cubic structure, the Pt3Zn ${\alpha}_2$phase with an ordered AuCu3(L12) type(f.c.c.) and the Pt-rich ${\alpha}_3$phase with face-centered cubic structure in solution-treated gold alloys were transformed into different three phases consisting of the ${\alpha}_1$phase, the ${\alpha}_3$phase and the PtZn $\beta$phase with an ordered AuCu I(L10) type. 3. The hardening of gold alloys was attributed to the lattice strains of the matrix resulting from the transformation of the ${\alpha}_2$phase to the $\beta$phase. 4. The softening of gold alloys during over-ageing was attributed to the coarsening of the nodules consisting of the $\beta$phase and ${\alpha}_1$matrix.

  • PDF