• Title/Summary/Keyword: high substrate affinity

Search Result 86, Processing Time 0.023 seconds

Crystal Structure and Functional Characterization of a Cytochrome P450 (BaCYP106A2) from Bacillus sp. PAMC 23377

  • Kim, Ki-Hwa;Lee, Chang Woo;Dangi, Bikash;Park, Sun-Ha;Park, Hyun;Oh, Tae-Jin;Lee, Jun Hyuck
    • Journal of Microbiology and Biotechnology
    • /
    • v.27 no.8
    • /
    • pp.1472-1482
    • /
    • 2017
  • Bacterial cytochrome P450 (CYP) steroid hydroxylases are effectively useful in the pharmaceutical industry for introducing hydroxyl groups to a wide range of steroids. We found a putative CYP steroid hydroxylase (BaCYP106A2) from the bacterium Bacillus sp. PAMC 23377 isolated from Kara Sea of the Arctic Ocean, showing 94% sequence similarity with BmCYP106A2 (Bacillus megaterium ATCC 13368). In this study, soluble BaCYP106A2 was overexpressed to evaluate its substrate-binding activity. The substrate affinity ($K_d$ value) to 4-androstenedione was $387{\pm}37{\mu}M$. Moreover, the crystal structure of BaCYP106A2 was determined at $2.7{\AA}$ resolution. Structural analysis suggested that the ${\alpha}8-{\alpha}9$ loop region of BaCYP106A2 is intrinsically mobile and might be important for initial ligand binding. The hydroxyl activity of BaCYP106A2 was identified using in vitro enzyme assays. Its activity was confirmed with two kinds of steroid substrates, 4-androstenedione and nandrolone, using chromatography and mass spectrometry methods. The main products were mono-hydroxylated compounds with high conversion yields. This is the second study on the structure of CYP106A steroid hydroxylases, and should contribute new insight into the interactions of bacterial CYP106A with steroid substrates, providing baseline data for studying the CYP106A steroid hydroxylase from the structural and enzymatic perspectives.

Purification and Characterization of Polyphenol Oxidase in Sweet Potato (Ipomoea batatas) (고구마 Polyphenol Oxidase의 정제 및 특성)

  • Chung, Soo-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.17 no.4
    • /
    • pp.348-357
    • /
    • 1988
  • The present work was undertaken to investigated the purification and characterization of polyphenol oxidase (PPO ; EC 1.10.3.1) in sweet potato, particularly the number of PPO isozymes, and PPO properties such as pH optimum, heat stability, substrate specificity, kinetics, and inhibitor studies. The purification achieved was 23.1 fold from crude extract with a yield of 41.5%. Eight PPO isozymes and twelve PPO isozymes were detected by disc polyacrylamide gel electrophoresis and isoelectric focusing, respectively. The specific activity of each isozyme separated by isoelectric focusing was in the range of $6,000{\sim}46,700U/mg$. This enzyme was sweet below $65^{\circ}C$ and the pH optimum of PPO occurred at 6.0-6.5. The substrate specificity of sweet potato PPO showed the high affinity toward the odiphenolic compounds. Km and Vmax for catechol were found to be 6.7 mM and $20{\triangle}A/min$, me protein, respectively. Inhibitor studies indicated that dithiothreitol was the most potent among the inhibitors used in the present work.

  • PDF

Polyhydroxyalkanoate Chip for the Specific Immobilization of Recombinant Proteins and Its Applications in Immunodiagnostics

  • Park, Tae-Jung;Park, Jong-Pil;Lee, Seok-Jae;Hong, Hyo-Jeong;Lee, Sang-Yup
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.2
    • /
    • pp.173-177
    • /
    • 2006
  • In this study, a novel strategy was developed for the highly selective immobilization of proteins, using the polyhydroxyalkanoate (PHA) depolymerase substrate binding domain (SBD) as an active binding domain. In order to determine the appropriacy of this method for immunodiagnostic assays, the single-chain antibody (ScFv) against the hepatitis B virus (HBV) preS2 surface protein and the severe acute respiratory syndrome coronavirus (SARS-CoV) envelope protein (SCVe) were fused to the SBD, then directly immobilized on PH A-coated slides via microspotting. The fluorescence-labeled HBV antigen and the antibody against SCVe were then utilized to examine specific interactions on the PHA-coated surfaces. Fluorescence signals were detected only at the spotted positions, thereby indicating a high degree of affinity and selectivity for their corresponding antigens/antibodies. Furthermore, we detected small amounts of ScFv-SBD (2.7 ng/mL) and SCVe-SBD fusion proteins (0.6ng/mL). Therefore, this microarray platform technology, using PHA and SBD, appears generally appropriate for immunodiagnosis, with no special requirements with regard to synthetic or chemical modification of the biomolecules or the solid surface.

In Vitro Determination of Dengue Virus Type 2 NS2B-NS3 Protease Activity with Fluorescent Peptide Substrates

  • Khumthong, Rabuesak;Angsuthanasombat, Chanan;Panyim, Sakol;Katzenmeier, Gerd
    • BMB Reports
    • /
    • v.35 no.2
    • /
    • pp.206-212
    • /
    • 2002
  • The NS2B-NS3(pro) polyprotein segment from the dengue virus serotype 2 strain 16681 was purified from overexpressing E. coli by metal chelate affinity chromatography and gel filtration. Enzymatic activity of the refolded NS2B-NS3(pro) protease complex was determined in vitro with dansyl-labeled peptide substrates, based upon native dengue virus type 2 cleavage sites. The 12mer substrate peptides and the cleavage products could be separated by reversed-phase HPLC, and were identified by UV and fluorescence detection. All of the peptide substrates (representing the DEN polyprotein junction sequences at the NS2A/NS2B, NS2B/NS3, NS3/NS4A and NS4B/NS5 sites) were cleaved by the recombinant protease NS2B-NS3(pro). No cleavage was observed with an enzymatically inactive S135A mutant of the NS3 protein, or with a modified substrate peptide of the NS3/NS4A polyprotein site that contained a K2093A substitution. Enzymatic activity was dependent on the salt concentration. A 50% decrease of activity was observed in the presence of 0.1M sodium chloride. Our results show that the NS3 protease activity of the refolded NS2B-NS3(pro) protein can be assayed in vitro with high specificity by using cleavage-junction derived peptide substrates.

Purification and Characterization of an Intracellular NADH: Quinone Reductase from Trametes versicolor

  • Lee, Sang-Soo;Moon, Dong-Soo;Choi, Hyoung-T.;Song, Hong-Gyu
    • Journal of Microbiology
    • /
    • v.45 no.4
    • /
    • pp.333-338
    • /
    • 2007
  • Intracellular NADH:quinone reductase involved in degradation of aromatic compounds including lignin was purified and characterized from white rot fungus Trametes versicolor. The activity of quinone reductase was maximal after 3 days of incubation in fungal culture, and the enzyme was purified to homogeneity using ion-exchange, hydrophobic interaction, and gel filtration chromatographies. The purified enzyme has a molecular mass of 41kDa as determined by SDS-PAGE, and exhibits a broad temperature optimum between $20-40^{\circ}C$, with a pH optimum of 6.0. The enzyme preferred FAD as a cofactor and NADH rather than NADPH as an electron donor. Among quinone compounds tested as substrate, menadione showed the highest enzyme activity followed by 1,4-benzoquinone. The enzyme activity was inhibited by $CuSO_4,\;HgCl_2,\;MgSO_4,\;MnSO_4,\;AgNO_3$, dicumarol, KCN, $NaN_3$, and EDTA. Its $K_m\;and\;V_{max}$ with NADH as an electron donor were $23{\mu}M\;and\;101mM/mg$ per min, respectively, and showed a high substrate affinity. Purified quinone reductase could reduce 1,4-benzoquinone to hydroquinone, and induction of this enzyme was higher by 1,4-benzoquinone than those of other quinone compounds.

Inhibitory Effect of Lipid Bilayer Membrane on Protein Phosphatase 2A (Protein Phosphatase 2A의 활성화에 미치는 Lipid Bilayer Membrane의 저해 효과)

  • 남기열
    • KSBB Journal
    • /
    • v.7 no.4
    • /
    • pp.302-307
    • /
    • 1992
  • Protein phosphatase 2A was obtained from a cytosolic fraction of bovine brain homogenate. The phosphatase activity using phosphorylated histone Hl as substrate was suppressed in the presence of liposomes composed of dipalmitoylphosphatidylcholine(DPPC) or the mixture of phosphatidylserine and DPPC. The binding of protein phosphatase to liposome was indicated by the facts that the phosphatase activity of the supernatant of protein phosphatase/multilayer vesicle mixture was decreased with increasing amount of liposome, and that [$^{125}I$]-labeled protein phosphatase was coeluted with liposome. However, the affinity of the protein for phospholipid membrane was not so high. On the other hand, okadaic acid and liposome reduced the phosphatase activity synergistically, which means that okadaic acid binds neither to lipid membrane nor to the membrane-associated phosphatase, The inhibitory effect of liposome was, therefore, ascribed to association of the protein phosphatase 2A with the lipid bilayer membrane.

  • PDF

Expression, purification and characterization of ubiquitin-specific pretense 1 for hydrolysis of ubiquitin-fused human growth hormone expressed in recombinant Escherichia coli

  • Na, Gang-In;Seo, Jin-Ho
    • 한국생물공학회:학술대회논문집
    • /
    • 2003.04a
    • /
    • pp.554-556
    • /
    • 2003
  • This research was focused on expression, purification and characterization of ubiquitin-specific protease 1 (UBP1) expressed in recombinant Escherichia coli. Various systems were constructed by fusing polycationic fusion tails or fusion partners to the C- or N-terminus of the product protein. In particular, UBP1 containing 6 histidine residues at the N-terminal end showed best results in terms of expression level and purification efficiency. The N-terminal $6{\times}His-tagged$ UBP1 was overproduced in recombinant E. coli using high cell density cultivation technology and purified using immobilized metal affinity chromatography. The molecular weight of UBP1 was found to be 83,500 daltons. The optimum temperature and pH for the enzyme reaction when ubiquitin-human growth hormone (hGH) was used as a substrate were $40^{\circ}C$ and pH 8.0, respectively.

  • PDF

Regulation of type-1 protein phosphatase in a model of metabolic arrest

  • Ramnanan, Christopher J.;Storey, Kenneth B.
    • BMB Reports
    • /
    • v.42 no.12
    • /
    • pp.817-822
    • /
    • 2009
  • Type-1 phosphatase (PP-1) was assessed in foot muscle (FM) and hepatopancreas (HP) of estivating (EST) Otala lactea. Snail PP-1 displayed several conserved traits, including sensitivity to inhibitors, substrate affinity, and reduction in size to a 39 kDa catalytic subunit (PP-1c). During EST, PP-1 activity in FM and HP crude extracts was reduced, though kinetics and protein levels of purified PP-1c isoforms were not altered. PP-1c protein levels increased and decreased in nuclear and glycogen-associated fractions, respectively, during EST. Gel filtration determined that a 257 kDa low $K_m$ PP-1$\alpha$ complex decreased during estivation whereas a 76 kDa high $K_m$ complex increased in EST. Western blotting confirmed that the 76 kDa protein consisted of PP-1$\alpha$ and nuclear inhibitor of PP-1 (NIPP-1). A suppression of PP-1 activity factors in the overall metabolic rate depression in estivating snails and the mechanism is mediated through altered cellular localization and interaction with binding partners.

Expression and Purification of Ubiquitin-Specific Protease (UBP1) of Saccharomyces cerevisiae in Recombinant Escherichia Coli

  • Na, Kang-In;Kim, Myoung-Dong;Min, Won-Ki;Kim, Jeong-Ah;Lee, Woo-Jong;Kim, Dae-Ok;Park, Kyung-Moon;Seo, Jin-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.6
    • /
    • pp.599-602
    • /
    • 2005
  • Truncated form of UBP1, an ubiquitin-specific protease of Saccharomyces cerevisiae, was overexpressed in Escherichia coli. The hexahistidine residue $(His_6)$ was fused to the N-terminus of truncated UBP1 and the corresponding recombinant protein was purified with high yield by immobilized metal affinity chromatography. The truncated form of UBP1 protein was functional to cleave ubiquitinated human growth hormone as substrate. Effects of pH and temperature were investigated in order to optimize deubiquitinating reactions for the truncated UBP1. Optimum temperature and pH for the cleavage reaction were $40^{\circ}C$ and pH 8.0, respectively.

Purification and Characterizationof Soluble Acid Invertase from the Hypocotyls of Mung Bean (Phaseolus radiatus L.) (녹두의 하배축에서 분리한 Soluble Acid Invertase의 정제와 특성)

  • Young-Sang Kim
    • Journal of Plant Biology
    • /
    • v.38 no.3
    • /
    • pp.251-258
    • /
    • 1995
  • The soluble acid invertase ($\beta$-D-fructofuranoside fructohydrolase, EC 3.2.1.26) was isolated and characterized from the hypocotyls of mung bean (Phaseolus radiatus L.). The enzyme was purified to apparent homogeneity by consecutive step using diethylaminoethyl (DEAE)-cellulose anion exchange, Concanavalin (Con) A affinity and Sephacryl S-300 chromatography. The overall purification was about 148-fold with a yield of about 15%. The finally purified enzyme exhibited a specific activity of about 139 $\mu$mol of glucose produced mg-1 protein min-1 at pH 5.0 and appeared to be a single protein by sodium dodecyl sulfate-polyacrylamide gel electrophoresis (SDS-PAGE) and nondenaturing PAGE. The enzyme had the native molecular weight of 70 kD and subunit molecular weight of 70 kD as estimated by Sephadex G-200 chromatography and SDS-PAGE, respectively, suggesting that the enzyme was composed of a monomeric protein. On the other hand, the enzyme appeared to be a glycoprotein containing N-linked high mannose oligosaccharide chain on the basis of its ability to bind to the immobilized C on A. The enzyme had a Km for sucrose of 1.8 mM at pH 5.0 and maximum activity around pH 5.0. The enzyme showed highest enzyme activity with sucrose as substrate, but the activity was slightly measured with raffinose and cellobise. No activity was measured with maltose and lactose. These results indicate the soluble acid invertase is a $\beta$-fructofuranosidase.

  • PDF