• Title/Summary/Keyword: high strength torsional reinforcement

Search Result 7, Processing Time 0.023 seconds

Failure Modes of RC Beams with High Strength Reinforcement (고강도 비틀림보강철근을 사용한 철근콘크리트 보의 파괴모드)

  • Yoon, Seok-Kwang;Lee, Su-Chan;Lee, Do-Hyeong;Lee, Jung-Yoon
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.2
    • /
    • pp.143-150
    • /
    • 2014
  • To avoid abrupt torsional failure due to concrete crushing before yielding of torsional reinforcement and control the diagonal crack width, design codes specify the limitations on the yield strength of torsional reinforcement of RC members. In 2012, Korean Concrete Institute design code increased the allowable maximum yield strength of torsional reinforcement from 400 MPa to 500 MPa based on the analytical and experimental research results. Although there are many studies regarding the shear behavior of RC members with high strength stirrups, limited studies of the RC members regarding the yield strength of torsional reinforcement are available. In this study, twelve RC beams having different yield strength of torsional reinforcement and compressive strength of concrete were tested. The experimental test results indicated that the torsional failure modes of RC beams were influenced by the yield strength of torsional reinforcement and the compressive strength of concrete. The test beams with normal strength torsional reinforcement showed torsional tension failure, while the test beams with high strength torsional reinforcement greater than 480 MPa showed torsional compression failure. Therefore, additional analytical and experimental works on the RC members subjected to torsion, especially the beams with high strength torsional reinforcement, are needed to find an allowable maximum yield strength of torsional reinforcement.

Analysis of High Strength Concrete RC Beams with Tensile Resistance Subjected to Torsion (고강도 콘크리트의 인장강성을 고려한 철근 콘크리트 보의 비틀림 해석)

  • Han, Sam-Heui;Kim, Jong-Gil;Park, Chang-Kyu
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.17 no.6
    • /
    • pp.31-39
    • /
    • 2013
  • The ultimate behavior of high-strength concrete beams is studied with respect to their strength. Thirteen beams were analyzed and the results are presented herein. The variable parameters were the concrete's compressive strength, from 57 to 184 MPa and the amount of lateral torsional reinforcement, from 0.35 to 1.49%. The ultimate torsional strengths from tests were compared with those by this proposed theory and by the ACI code. As a consequence, The ultimate torsional strengths by this proposed theory show the better results than those by the ACI code.

Effect of spiral reinforcement on flexural-shear-torsional seismic behavior of reinforced concrete circular bridge columns

  • Belarbi, Abdeldjelil;Prakash, Suriya;You, Young-Min
    • Structural Engineering and Mechanics
    • /
    • v.33 no.2
    • /
    • pp.137-158
    • /
    • 2009
  • This paper investigates the behavior of reinforced concrete (RC) circular columns under combined loading including torsion. The main variables considered in this study are the ratio of torsional moment to bending moment (T/M) and the level of detailing for moderate and high seismicity (low and high transverse reinforcement/spiral ratio). This paper presents the results of tests on seven columns subjected to cyclic bending and shear, cyclic torsion, and various levels of combined cyclic bending, shear, and torsion. Columns under combined loading were tested at T/M ratios of 0.2 and 0.4. These columns were reinforced with two spiral reinforcement ratios of 0.73% and 1.32%. Similarly, the columns subjected to pure torsion were tested with two spiral reinforcement ratios of 0.73% and 1.32%. This study examined the significance of proper detailing, and spiral reinforcement ratio and its effect on the torsional resistance under combined loading. The test results demonstrate that both the flexural and torsional capacities are decreased due to the effect of combined loading. Furthermore, they show a significant change in the failure mode and deformation characteristics depending on the spiral reinforcement ratio. The increase in spiral reinforcement ratio also led to significant improvement in strength and ductility.

An experimental and numerical investigation on the effect of longitudinal reinforcements in torsional resistance of RC beams

  • Khagehhosseini, A.H.;Porhosseini, R.;Morshed, R.;Eslami, A.
    • Structural Engineering and Mechanics
    • /
    • v.47 no.2
    • /
    • pp.247-263
    • /
    • 2013
  • It is evident that torsional resistance of a reinforced concrete (RC) member is attributed to both concrete and steel reinforcement. However, recent structural design codes neglect the contribution of concrete because of cracking. This paper reports on the results of an experimental and numerical investigation into the torsional capacity of concrete beams reinforced only by longitudinal rebars without transverse reinforcement. The experimental investigation involves six specimens tested under pure torsion. Each specimen was made using a cast-in-place concrete with different amounts of longitudinal reinforcements. To create the torsional moment, an eccentric load was applied at the end of the beam whereas the other end was fixed against twist, vertical, and transverse displacement. The experimental results were also compared with the results obtained from the nonlinear finite element analysis performed in ANSYS. The outcomes showed a good agreement between experimental and numerical investigation, indicating the capability of numerical analysis in predicting the torsional capacity of RC beams. Both experimental and numerical results showed a considerable torsional post-cracking resistance in high twist angle in test specimen. This post-cracking resistance is neglected in torsional design of RC members. This strength could be considered in the design of RC members subjected to torsion forces, leading to a more economical and precise design.

Examination of Lateral Torsional Bucling Strength by Increasing the Warping Strength of I-Section Plate Girder with Concrete Filled Half Pipe Stiffener (콘크리트 충전 반원기둥보강재가 적용된 플레이트 거더의 뒤틀림 강도)

  • Cheon, Jinuk;Lee, Senghoo;Baek, Seungcheol;Kim, Sunhee
    • KSCE Journal of Civil and Environmental Engineering Research
    • /
    • v.43 no.5
    • /
    • pp.577-585
    • /
    • 2023
  • Lateral torsional buckling causessafety accidentssuch as collapse accidents during erection. Therefore, anaccurate safety designshould be conducted. Lateral torsional buckling canbe prevented by reinforcing the end orreducing the unbraced length. The method ofreducing the unbraced length by installing a crossframe has high material and installation costs and low maintenance performance.In addition, structuralsafety may be deteriorated due to cracks. The end reinforcement method using Concrete Filled Half Pipe Stiffeneris a method ofreinforcing the end of a plate girder using a stiffenerin the form of a semi-circular column. This method increasesthewarping strength ofthe girder and increasesthe lateral torsional buckling strength.In thisstudy, the effect ofincreasing the warping strengthof plate girders with concrete filled half pipe stiffeners was confirmed. To verify the effect, the results ofthe designequationand the finite element analysis were compared and verified through a experiment. As a result, the plate girderwithCFHPS increased thewarping strengthand confirmed that the lateral torsional buckling strength was increased.

Finite element analysis of longitudinal reinforcement beams with UHPFC under torsion

  • Mohammed, Thaer Jasim;Bakar, B.H. Abu;Bunnori, N. Muhamad;Ibraheem, Omer Farouk
    • Computers and Concrete
    • /
    • v.16 no.1
    • /
    • pp.1-16
    • /
    • 2015
  • The proposed techniques to strengthen concrete members such as steel plates, polymers or concrete have important deficiencies in adherence and durability. The use of UHPFC plates can overtake effectively these problems. In this paper, the possibility of using UHPFC to strengthen RC beams under torsion is investigated. Four specimens of concrete beams reinforced with longitudinal bars only were tested under pure torsion. One of the beams was considered as the baseline specimen, while the others were strengthened by ultra-high-performance fiber concrete (UHPFC) on two, three, and four sides. Finite element analysis was conducted in tandem with experimental work. Results showed that UHPFC enhances the strength, ductility, and toughness of concrete beams under torsional load, and that finite element analysis is in good agreement with the experimental data.

Estimation of ultimate torque capacity of the SFRC beams using ANN

  • Engin, Serkan;Ozturk, Onur;Okay, Fuad
    • Structural Engineering and Mechanics
    • /
    • v.53 no.5
    • /
    • pp.939-956
    • /
    • 2015
  • In this study, in order to propose an efficient model to predict the torque capacity of steel fiber reinforced concrete (SFRC) beams, the existing experimental data related to torsional response of beams is reviewed. It is observed that existing data neglects the effects of some parameters on the variation of torque capacity. Thus, an experimental research was also conducted to obtain the effects of neglected parameters. In the experimental study, a total of seventeen SFRC beams are tested against torsion. The parameters considered in the experiments are concrete compressive strength, steel fiber aspect ratio, volumetric ratio of steel fibers and longitudinal reinforcement ratio. The effect of each parameter is discussed in terms of torque versus unit angle of twist graphs. The data obtained from this experimental research is also combined with the data got from previous studies and employed in artificial neural network (ANN) analysis to estimate the ultimate torque capacity of SFRC beams. In addition to parameters considered in the experiments, aspect ratio of beam cross-section, yield strengths of both transverse and longitudinal reinforcements, and transverse reinforcement ratio are also defined as parameters in ANN analysis due to their significant effects observed in previous studies. Assessment of the accuracy of ANN analysis in estimating the ultimate torque capacity of SFRC beams is performed by comparing the analytical and experimental results. Comparisons are conducted in terms of root mean square error (RMSE), mean absolute error (MAE) and coefficient of efficiency ($E_f$). The results of this study revealed that addition of steel fibers increases the ultimate torque capacity of reinforced concrete beams. It is also found that ANN is a powerful method and a feasible tool to estimate ultimate torque capacity of both normal and high strength concrete beams within the range of input parameters considered.