• Title/Summary/Keyword: high strength steel tubes

Search Result 57, Processing Time 0.027 seconds

Comparative study between inelastic compressive buckling analysis and Eurocode 3 for rectangular steel columns under elevated temperatures

  • Seo, Jihye;Won, Deokhee;Kim, Seungjun
    • Steel and Composite Structures
    • /
    • v.43 no.3
    • /
    • pp.341-351
    • /
    • 2022
  • This paper presents an inelastic buckling behavior analysis of rectangular hollow steel tubes with geometrical imperfections under elevated temperatures. The main variables are the temperature loads, slenderness ratios, and exposure conditions at high temperatures. The material and structural properties of steels at different temperatures are based on Eurocode (EN 1993-1-2, 2005). In the elastic buckling analysis, the buckling strength decreases linearly with the exposure conditions, whereas the inelastic buckling analysis shows that the buckling strength decreases in clusters based on the exposure conditions of strong and weak axes. The buckling shape of the rectangular steel column in the elastic buckling mode, which depicts geometrical imperfection, shows a shift in the position at which bending buckling occurs when the lower section of the member is exposed to high temperatures. Furthermore, lateral torsional buckling occurs owing to cross-section deformation when the strong axial plane of the model is exposed to high temperatures. The elastic buckling analysis indicates a conservative value when the model is exposed to a relatively low temperature, whereas the inelastic buckling analysis indicates a conservative value at a certain temperature or higher. The comparative results between the inelastic buckling analysis and Eurocode 3 show that a range exists in which the buckling strength in the design equation result is overestimated at elevated temperatures, and the shapes of the buckling curves are different.

Modelling and experiment of semi rigid joint between composite beam and square CFDST column

  • Guo, Lei;Wang, Jingfeng;Zhang, Meng
    • Steel and Composite Structures
    • /
    • v.34 no.6
    • /
    • pp.803-818
    • /
    • 2020
  • Semi-rigid connections with blind bolts could solve the difficulty that traditional high strength bolts were unavailable to splice a steel/composite beam to a closed section column. However, insufficient investigations have focused on the performance of semi-rigid connection to square concrete filled double-skin steel tubular (CFDST) columns. In this paper, a component model was developed to evaluate the mechanical behavior of semi-rigid composite connections to CFDST columns considering the stiffness and strength of column face in compression and column web in shear which were determined by the load transfer mechanism and superstition method. Then, experimental investigations on blind bolted composite joints to square CFDST columns were conducted to validate the accuracy of the component model. Dominant failure modes of the connections were analyzed and this type of joint behaved semi-rigid manner. More importantly, strain responses of CFDST column web and tubes verified that stiffness and strength of column face in compression and column web in shear significantly affected the connection mechanical behavior owing to the hollow part of the cross-section for CFDST column. The experimental and analytical results showed that the CFDST column to steel-concrete composite beam semi-rigid joints could be employed for the assembled structures in high intensity seismic regions.

Torsional Behaviour of Concrete Filled Circular Steel Tube Column Considering Confinement Effect (구속효과를 고려한 콘크리트 충전 원형강관 기둥의 비틀림 거동)

  • Yun, Bok Hee;Lee, Eun Taik;Park, Ji Young;Jang, Kyong Ho
    • Journal of Korean Society of Steel Construction
    • /
    • v.16 no.5 s.72
    • /
    • pp.529-541
    • /
    • 2004
  • Concrete filled steel tube structures were recently used in constructing high-rise buildings due to their effectiveness. Studies on concrete filled steel tubes have been focused on the experiments of uni-axial compression and bending and eccentric compression. There were also a few studies that investigated CFT member behavior under combined compression and torsion. The behavior of a circular CFT column under combined torsion and compression was theoretically investigated, considering the confinement of steel tubes on the concrete, the softening of the concrete, and the spiral effect, which were the dominant factors that influenced compression and torsion strength. The biaxial stress effects due to diagonal cracking were also taken into account. By applying those factors to compatibility and equilibrium conditions, the basic equation was derived, and the equation could be used to incorporate the torsional behavior of the entire loading history of the CFT member.

A Study on the Strength of Concrete Filled Tubular Columns according to Data-Base (Data Base에 의한 CFT 기둥의 내력에 관한 연구)

  • Seo, Jeong-Hwan;Yang, Young-Sung
    • Journal of Korean Society of Steel Construction
    • /
    • v.13 no.1
    • /
    • pp.71-79
    • /
    • 2001
  • The concrete filled tubular(CFT) columns have many excellent structural properites. such as high compressive strength high ductility and high absorption capacity However the confinement effect and limiting width-thickness ratio of CFT column have not yet been clarified. Therefore. this paper aims to clarify the confinement effect of steel tubes and strength of concrete filled steel tubular columns. And this paper presents results of a probabilistic analysis based on statistical data for strength of concrete filled steel tubular columns which has been tested in Korea for recent 10 years(1991.1~2000.6).

  • PDF

Refined finite element modelling of circular CFST bridge piers subjected to the seismic load

  • Faxing Ding;Qingyuan Xu;Hao Sun;Fei Lyu
    • Computers and Concrete
    • /
    • v.33 no.6
    • /
    • pp.643-658
    • /
    • 2024
  • To date, shell-solid and fibre element model analysis are the most commonly used methods to investigate the seismic performance of concrete-filled steel tube (CFST) bridge piers. However, most existing research does not consider the loss of bearing capacity caused by the fracture of the outer steel tube. To fill this knowledge gap, a refined finite element (FE) model considering the ductile damage of steel tubes and the behaviour of infilled concrete with cracks is established and verified against experimental results of unidirectional, bidirectional cyclic loading tests and pseudo-dynamic loading tests. In addition, a parametric study is conducted to investigate the seismic performance of CFST bridge piers with different concrete strength, steel strength, axial compression ratio, slenderness ratio and infilled concrete height using the proposed model. The validation shows that the proposed refined FE model can effectively simulate the residual displacement of CFST bridge piers subjected to highintensity earthquakes. The parametric analysis indicates that CFST piers hold sufficient strength reserves and sound deformation capacity and, thus, possess excellent application prospects for bridge construction in high-intensity areas.

Study on the Improvement of Weld-joint Reliability in Waterwall Tubes of the Ultra Supercritical Coal Fired Boiler (석탄화력발전용 초초임계압(USC) 보일러 수냉벽 튜브 용접 신뢰성 향상에 대한 연구)

  • Ahn, Jong-Seok;Lee, Seung-Hyun;Cho, Sang-Kie;Lee, Gil-Jae;Lee, Chang-Hee;Moon, Seung-Jae
    • Journal of Welding and Joining
    • /
    • v.28 no.1
    • /
    • pp.41-46
    • /
    • 2010
  • The low alloy-steel material(1.0Cr-0.5Mo, SA213T12), which has widely been used for the waterwall tube in the conventional power plant, do not have enough creep rupture strength for waterwall tubes of the Ultra-supercritical(USC) boilers. According to this reason, the high-strength low alloy-steel(2.25Cr-1.0Mo, SA213T22) has newly been adopted for the waterwall tube in the USC boilers. This paper presents failure analysis on weld-joint of the waterwall tubes in USC boilers. Visual inspections were performed to find out the characteristics of the fracture. Additionally both microscopic characteristics and hardness test were carried out on failed tube samples. Failures seem to happen mainly because the welding process has not been conducted strictly.(preheating, P.W.H.T and so forth). Thus, this paper has the purpose to describe the main cause of the poor welding process and to explain how to prevent similar failures in those weld-joints.

Modeling of heated concrete-filled steel tubes with steel fiber and tire rubber under axial compression

  • Sabetifar, Hassan;Nematzadeh, Mahdi;Gholampour, Aliakbar
    • Computers and Concrete
    • /
    • v.29 no.1
    • /
    • pp.15-29
    • /
    • 2022
  • Concrete-filled steel tubes (CFSTs) are increasingly used as composite sections in structures owing to their excellent load bearing capacity. Therefore, predicting the mechanical behavior of CFST sections under axial compression loading is vital for design purposes. This paper presents the first study on the nonlinear analysis of heated CFSTs with high-strength concrete core containing steel fiber and waste tire rubber under axial compression loading. CFSTs had steel fibers with 0, 1, and 1.5% volume fractions and 0, 5, and 10% rubber particles as sand alternative material. They were subjected to 20, 250, 500, and 750℃ temperatures. Using flow rule and analytical analysis, a model is developed to predict the load bearing capacity of steel tube, and hoop strain-axial strain relationship, and axial stress-volumetric strain relationship of CFSTs. An elastic-plastic analysis method is applied to determine the axial and hoop stresses of the steel tube, considering elastic, yield, and strain hardening stages of steel in its stress-strain curve. The axial stress in the concrete core is determined as the difference between the total experimental axial stress and the axial stress of steel tube obtained from modeling. The results show that steel tube in CFSTs under 750℃ exhibits a higher load bearing contribution compared to those under 20, 250, and 500℃. It is also found that the ratio of load bearing capacity of steel tube at peak point to the load bearing capacity of CFST at peak load is noticeable such that this ratio is in the ranges of 0.21-0.33 and 0.31-0.38 for the CFST specimens with a steel tube thickness of 2 and 3.5 mm, respectively. In addition, after the steel tube yielding, the load bearing capacity of the tube decreases due to the reduction of its axial stiffness and the increase of hoop strain rate, which is in the range of about 20 to 40%.

Seismic behavior of full-scale square concrete filled steel tubular columns under high and varied axial compressions

  • Phan, Hao D.;Lin, Ker-Chun
    • Earthquakes and Structures
    • /
    • v.18 no.6
    • /
    • pp.677-689
    • /
    • 2020
  • A building structural system of moment resisting frame (MRF) with concrete filled steel tubular (CFST) columns and wide flange H beams, is one of the most conveniently constructed structural systems. However, there were few studies on evaluating seismic performance of full-scale CFST columns under high axial compression. In addition, some existing famous design codes propose various limits of width-to-thickness ratio (B/t) for steel tubes of the ductile CFST composite members. This study was intended to investigate the seismic behavior of CFST columns under high axial load compression. Four full-scale square CFST column specimens with a B/t of 42 were carried out that were subjected to horizontal cyclic-reversal loads combined with constantly light, medium and high axial loads and with a linearly varied axial load, respectively. Test results revealed that shear strength and deformation capacity of the columns significantly decreased when the axial compression exceeded 0.35 times the nominal compression strength of a CFST column, P0. It was obvious that the higher the axial compression, the lower both the shear strength and deformation capacities were, and the earlier and faster the shear strength degradation occurred. It was found as well that higher axial compressions resulted in larger initial lateral stiffness and faster degradation of post-yield lateral stiffness. Meanwhile, the lower axial compressions led to better energy dissipation capacities with larger cumulative energy. Moreover, the study implied that under axial compressions greater than 0.35P0, the CFST column specimens with B/t limits recommended by AISC 360 (2016), ACI 318 (2014), AIJ (2008) and EC4 (2004) codes do not provide ultimate interstory drift ratio of more than 3% radian, and only the limit in ACI 318 (2014) code satisfies this requirement when axial compression does not exceed 0.35P0.

Behavior of impact toughness in the HAZ of high strength steel tubes for power transmission steel tower (송전 강관 철탑 용접 열영향부의 인성 거동특성에 관한 연구)

  • Min, Kyoung-O;Park, Jong-Won;Lee, Chang-Hee
    • Proceedings of the KIEE Conference
    • /
    • 1999.11b
    • /
    • pp.455-459
    • /
    • 1999
  • 용접열영향부는 최고 도달온도로부터의 거리에 따른 온도구배 변화와 급격한 열 사이 클 때문에 조직 및 물성치의 변화가 예상되는 영역이므로 인성저하등 취성이 잠재적으로 내포된 지역임을 쉽게 예상할 수 있다. 따라서 송전 철탑용 STKT 590 용접열영향부에서의 상변태 거동과 미세조직의 변화에 따른 기계적 특성을 파악하여 용접부의 안전성 확보를 위해 용접열영향부(HAZ)의 상변태거동과 미시파괴기구를 연구하고 개선안을 도출할 필요가 있다.

  • PDF

Confinement evaluation of concrete-filled box-shaped steel columns

  • Susantha, K.A.S.;Ge, Hanbin;Usami, Tsutomu
    • Steel and Composite Structures
    • /
    • v.1 no.3
    • /
    • pp.313-328
    • /
    • 2001
  • This paper presents a three-dimensional finite element analysis methodology for a quantitative evaluation of confinement in concrete-filled box-shaped unstiffened steel columns. The confinement effects of concrete in non-circular sections can be assessed in terms of maximum average lateral pressure. A brief review of a previous method adopted for the same purpose is also presented. The previous method is based on a two-dimensional finite element analysis method involving a concrete-steel interaction model. In both the present and previous methods, average lateral pressure on concrete is computed by means of the interaction forces present at the concrete-steel interface. Subsequently, the strength enhancement of confined concrete is empirically related to the maximum average lateral pressure. The results of the former and latter methods are then compared. It is found that the results of both methods are compatible in terms of confined concrete strengths, although the interaction model yields a somewhat overestimated estimation of confinement than those of the present method when relatively high strength concrete is used. Furthermore, the confinement in rectangular-shaped sections is investigated and the reliability of previously adopted simplifications in such cases is discussed.