• Title/Summary/Keyword: high strength column

Search Result 608, Processing Time 0.029 seconds

Separation of Functionalized Heterocyclic Compounds by High Performance Liquid Chromatography(I) (고성능 액체 크로마토그래피에 의한 기능성 헤테로고리화합물의 분리(I))

  • Lee, Kwang-PilI;Cho, Yun Jin;Lee, Young Cheol
    • Analytical Science and Technology
    • /
    • v.10 no.6
    • /
    • pp.408-417
    • /
    • 1997
  • Normal phase or reversed phase liquid chromatographic separation of some structural isomers of functionalized heterocyclic compounds has been carried out by using several different columns and various mobile phases. The optimal experimental conditions for separation of structural isomers were found on a ternary solvent system including alcohol as a modifier. This polar modifier is preferentially adsorbed onto strong adsorption site, leaving a more uniform population of weaker site that then serve to retain the sample. This 'deactivation' of the adsorbent leads to a number of improvements in subsequent separations. The optimal mobile phase system of separation were found on normal phase on structural isomers. Retention mechanism of normal phase system was also studied depending on adsorption strength between solute and stationary phase of column. However, retention factors of reversed phase system were found on hydrophobic interaction with solvophobic effect.

  • PDF

Study on Reinforcement Effect of Circular RC Columns by Helical Bar Under Cyclic Lateral Load (반복 횡하중을 받는 원형 철근콘크리트 기둥의 Helical Bar 보강효과에 대한 연구)

  • Kim, Seong-Kyum;Park, Jong-Kwon;Han, Sang-Hee;Kim, Byung-Cheol;Jang, Il-Young
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.18 no.1
    • /
    • pp.48-58
    • /
    • 2014
  • In this study, quasi-static according to the displacement-controlled (strain control) method tests on RC columns for seismic reinforcement performance in accordance with the provisions of the seismic design and construction before 1992 design code for highway bridges in korea. Used reinforcement that improves the performance of Inorganic Helical Bar, a kind of alloy steel, circular columns were tested outside the seismic reinforcing. In the experiment, fracture behavior, lateral load-displacement relation, ductility and energy assessment evaluation was performed through tests. The variables in experimental are section force of reinforcement, spiral reinforcement spacing, reinforcement method. Improved seismic performance and effect were confirmed through quasi-static test experiments. The results of study confirmed determination the appropriate size of reinforcement, reinforcement forces, spacing and selection of the type required, furthermore, not only mechanical reinforcement but also substitution of high-strength concrete reinforced with concrete cover improved seismic performance.

Numerical Study for Seismic Strengthening of RC columns Using Fiber Reinforced Plastic Composite (기둥의 내진성능 향상을 위한 섬유보강 복합체의 적용성에 대한 해석적 연구)

  • Chang, Chun Ho;Kwon, Min Ho;Kim, Jin Sup;Joo, Chi Hong
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.16 no.3
    • /
    • pp.117-127
    • /
    • 2012
  • As increasing number of large-size earthquake around Korean peninsula, many interests have been focused to the earthquake strengthening of existing structures. Fiber reinforced plastic composite material is one of strengthening material widely used to increase seismic performance of structures. It should have high stiffness as well as large ductility to provide best strengthening result. Thus selection of stiffener and fiber in composite is of important. In this study, the optimal combination of fiber and stiffener is selected with variety of tensile tests. In order to investigate performance of chosen composite material, several finite element analyses are performed with proposed FRP composite material for existing RC columns. It is discussed that the seismic performance of strengthened columns through the load-displacement relationship. It is shown that the proposed composite material can increase the strength as well as ductility of exiting RC columns.

Realistic Estimate Method of Reinforced Concrete Column's Ultimate Strength Using the Nonlinear Finite Element Analysis Program (비선형 유한요소해석 프로그램을 이용한 철근콘크리트 기둥부재의 합리적인 극한강도 평가 방안)

  • Cheon, Ju-Hyoun;Kim, Ki-Ho;Seong, Dae-Jeong;Park, Jae-Guen
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.12 no.4
    • /
    • pp.133-140
    • /
    • 2008
  • The design method of the reinforced concrete structures is converting from the current limit state design method to the reliability based design method and active studies have been done in the US, Europe, and Japan etc. Performance based design method is considering lots of uncertainty of current design provision rationally and make sure that structure have a reliable reliability and safety. The main area of these studies is to secure the non-linear analysis technology with high reliability. The data for reinforced concrete columns tested by many researchers are used to verify the applicability of the nonlinear finite element analysis program (RCAHEST, Reinforced Concrete Analysis in Higher Evaluation System Technology). A comparison is made between analysis and test, calculated safety factor based on reliability theories to applies to analysis result.

Kinetic Study Of $La_2$O_3-A1_2O_3-SiO_2$ glass infiltration into Spinel Preforms (스피넬 전성형체의 $La_2$O_3-A1_2O_3-SiO_2$계 유리 침투 kinetic)

  • 이득용;장주웅;김병수;김대준;송요승
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.12 no.1
    • /
    • pp.31-35
    • /
    • 2002
  • Abstract Spinel powder having a particle size of 0.9$\mu$m was calcined for 30 min at $1300^{\circ}C$, followed by ball milling for 4h, to obtain the spinel particle size of 3.29$\mu$m. The die-pressed spinel was presintered at $1100^{\circ}C$ for 2h and then lanthanum aluminosilicate glass was infiltrated at $1080^{\circ}C$ for 0~2 h to investigate the penetration kinetics in glass-spinel composite. The infiltration distance is parabolic in time due to capillarity. The strength and the fracture toughness of glassspinel composites were 317 MPa and 3.56 MPa $m^{1/2}$ respectively and dual microstructure of column (needle) and polygonal shapes as a result of recrystallization was observed due to the high calcination temperature.

Research on prefabricated concrete beam-column joint with high strength bolt-end plate

  • Shufeng, Li;Di, Zhao;Qingning, Li;Huajing, Zhao;Jiaolei, Zhang;Dawei, Yuan
    • Structural Engineering and Mechanics
    • /
    • v.74 no.3
    • /
    • pp.395-406
    • /
    • 2020
  • Many prefabricated concrete frame joints have been proposed, and most of them showed good seismic performance. However, there are still some limitations in the proposed fabricated joints. For example, for prefabricated prestressed concrete joints, prefabricated beams and prefabricated columns are assembled as a whole by the pre-stressed steel bar and steel strand in the beams, which brings some troubles to the construction, and the reinforcement in the core area of the joints is complex, and the mechanical mechanism is not clear. Based on the current research results, a new type of fabricated joint of prestressed concrete beams and confined concrete columns is proposed. To study the seismic performance of the joint, the quasi-static test is carried out. The test results show that the nodes exhibit good ductility and energy dissipation. According to the experimental fitting method and the "fixed point pointing" law, the resilience model of this kind of nodes is established, and compared with the experimental results, the two agree well, which can provides a certain reference for elasto-plastic seismic response analysis of this type of structure. Besides, based on the analysis of the factors affecting the shear capacity of the node core area, the formula of shear capacity of the core area of the node is proposed, and the theoretical values of the formula are consistent with the experimental value.

Seismic Performance Evaluation of the Ceiling Bracket-type Modular System with Various Bracket Lengths and Bolt Types (천장 브래킷형 모듈러 시스템의 브래킷 길이와 볼트에 따른 내진성능평가)

  • Kwak, Eui-Shin;Kang, Chang-Hoon;Shon, Su-Deok;Lee, Seung-Jae
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.34 no.4
    • /
    • pp.25-33
    • /
    • 2018
  • In regard to modular systems, new methods, as well as middle and high-story unit design ideas, are currently being studied. These studies need to focus on the enhanced stiffness and seismic performance of these connections, and see that the development of fully restrained moment connections can improve the seismic performance. For this reason, this study evaluates the performance of the connections of the ceiling bracket-typed modular system through repeated loading tests and analyses. In order to compare them with these modular units, new unit specimens with the bracket connection being different from that of the traditional modular unit specimens were designed, and the results of repeated loading tests were analyzed. In the traditional units, the structural performances of both welding connection and bolt connection were evaluated. In regard to the testing results, the initial stiffness of the hysteresis curve was compared with the theoretical initial stiffness, and the features of all specimens were also analyzed with regard to the maximum moment. In addition, the test results were examined with regard to the connection flexural strength of the steel special moment frame specified under the construction criteria KBC2016. The connections, which were proposed in the test results, were found to be fully restrained moment connections for designing strong column-weak beams and meeting the requirements of seismic performance of special moment frames.

Analysis of the Segment-type Ring Burst Test Method for the Mechanical Property Evaluation of Cylindrical Composite Pressure Vessel (원통형 복합재료 압력 용기의 기계적 물성 평가를 위한 세그먼트 형 링 버스트 시험 방법 분석)

  • Kim, Woe Tae;Kim, Seong Soo
    • Composites Research
    • /
    • v.34 no.4
    • /
    • pp.257-263
    • /
    • 2021
  • Composite materials have been widely applied for fabricating pressure vessels used for storing gaseous and liquid fuel because of their high specific stiffness and specific strength. Accordingly, the accurate measurement of their mechanical property, particularly the burst pressure or fracture strain, is essential prior to the commercial release. However, verification of the safety of composite pressure vessels using conventional test methods poses some limitations because it may lead to the deformation of the load transferring media or provoke an additional energy loss that cannot be ignored. Therefore, in this study, the segment-type ring burst test device was designed considering the theoretical load transferring ratio and applicable displacement of the vertical column. Moreover, to verifying the uniform distribution of pressure of the segment type ring burst test device, the hoop stress and strain distribution of ring specimens were compared with that of the hydraulic pressure test method via FEM. To conduct a simulation of the fracture behavior of the composite pressure vessel, a Hashin failure criterion was applied to the ring specimen. Furthermore, the fracture strain was also measured from the experiment and compared with that of the result from the FEM.

Characteristics of Sand-Rubber Mixtures under Different Strain Levels: Experimental Observation (변형률에 따른 모래-고무 혼합재의 거동 특성: 실험적 관찰)

  • Lee, Chang-Ho;Byun, Yong-Hoon;Lee, Jong-Sub
    • Journal of the Korean Geotechnical Society
    • /
    • v.27 no.3
    • /
    • pp.85-94
    • /
    • 2011
  • Mixtures of sand and rubber particles ($D_{sand}/D_{rubber}=1$) are investigated to explore their characteristics under different stain level. Mixtures are prepared with different volumetric sand fractions ($sf=V_{sand}/V_{total}$). Experimental data are gathered from a resonant column, an instrumented oedometer, and a direct shear tests. Results show that sand and rubber differently control the behavior of the whole mixture with strain level. Non-linear degradation of small strain stiffness is observed for the mixtures with $sf{\geq}0.4$, while the mixtures with low sand fraction ($sf{\leq}0.2$) show significantly high elastic threshold strain. Vertical stress-deformation increases dramatically when the rubber particle works as a member of force chain. The strength of the mixtures increases as the content of rubber particle decreases, and contractive behavior is observed in the mixtures with $sf{\leq}0.8$. Rubber particle plays different roles with strain level in the mixture: it increases a coordination number and controls a plasticity of the mixture in small strain; it prevents a buckling of force chain in intermediate strain; it leads a contractive behavior in large strain.

Member Sizing Method in IsoTruss® Grid High-rise Building Structures Based on Stiffness Criteria (강성도 기준에 따른 IsoTruss® 그리드 고층건물의 부재선정 방법)

  • Kim, Tae-Heon;Kim, Young-Chan
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.18 no.12
    • /
    • pp.50-56
    • /
    • 2017
  • The perimeter structure in high-rise buildings, which plays a major role in resisting lateral forces, is generally formed by the orthogonal placement of the beam and column, but currently various grid patterns are implemented. In a previous study, the adaptability of the $IsoTruss^{(R)}$ grid (ITG) as a perimeter structure was examined. In this study, a method of estimating the required cross sectional area of a member in a preliminary design is proposed. The members of the perimeter structure are placed in three planes, perpendicular (PPR), parallel (PPL) and oblique (POQ) to the lateral loading, and the stiffness of the members in the POQ was taken into account by projecting them onto the PPL or PPR. Three models are established for member size zoning through the height of the building, in order to investigate the effect of the shear and moment in the calculation of the required cross sectional area. To examine the effectiveness of this study, a 64-story building is designed and analyzed. The effect of the member size zoning was examined by comparing the maximum lateral displacement, required steel amount, and axial strength ratio of the columns. Judging from the maximum lateral displacement, which was 97.3% of the allowable limit, the proposed formula seems to be implemental in sizing the members of an ITG structure at the initial stage of member selection.