• Title/Summary/Keyword: high strength aluminum alloy

Search Result 227, Processing Time 0.028 seconds

Fracture Toughness and Slinding Wear Properties of ABOw/AC4CH by Binder Additives (ABOw/AC4CH의 바인더 종류에 따른 파괴인성 및 미끄럼마모 특성)

  • Park, Won-Jo;Jung, Jae-Wook;Choi, Yong-Bum;Lee, Kwung-Young
    • Proceedings of the Korea Committee for Ocean Resources and Engineering Conference
    • /
    • 2002.10a
    • /
    • pp.373-378
    • /
    • 2002
  • Metal matrix composites have a great interest in recent years because high specific strength, high specific stiffness characteristics, and application ranges of the composites are extend to variety industry. In this paper, an investigation was performed on the plane strain fracture toughness and slinding wear properties of AC4CH alloy(Al-Si-Mg line) reinforced with 20wt% aluminum borate whisker expect one, which contained a inorganic binder($TiO_2$). the binder led to the formation of strengthen the whisker each other. The test of fracture toughness was using CT(half size) specimen of thickness 12.5mm, width 25mm. and test of slinding wear of using tribo a pin-on-disk machine and lubricant is used without paraffine 8.2CST at room temperature. As results, Fracture toughness $K_{IC}$ is $8.7MPa-m^{05}$ for ABOw/AC4CH, $9.28MPa-m^{05}$ for ABOw/AC4CH added $TiO_2$. but AC4CH alloy was violated the critical stipulated by ASTM standard for valid measurement of $K_{IC}$. In case of, it was performed $J_{IC}$ test instead of $K_{IC}$ based on ASTM E 1820.

  • PDF

Effect of Fabrication Process on the Mechanical Properties of High Strength 7175Al Die Forgings (고강도 7175Al 형단조재의 기계적 성질에 미치는 제조공정의 영향)

  • Lee, I.G.;Kang, S.S.;Lee, O.Y.
    • Korean Journal of Materials Research
    • /
    • v.13 no.12
    • /
    • pp.812-818
    • /
    • 2003
  • The aim of this study is to investigate the fabrication processes on the microstructual changes and mechanical properties of large 7175 aluminum die forgings. The billets range from 370 to 720 mm in diameter were homogenized and hot forged after direct chill casting. The strength and elongation of the homogenized cast billets were revealed nearly same level independent of the billet diameter. However, these properties of ø370 mm cast billet were superior to those of $\Pie720$ mm billet under$ T_{6}$ / condition. The tensile strength of die forged specimens under $T_{6}$ condition increased up to 20% than that of solution treatment, however, the elongation was reduced to 50%. The fracture toughness of die forged specimens under $T_{6}$ condition was 35.6∼39.0 MPa$.$$m^{1}$2 irrespective of the billet size and free forging processes, but this property increased up to 10% by$V_{74}$ treatment. The fracture toughness of die forged specimen manufactured with ø370 mm cast billet showed nearly same level of ø720 mm billet which was processed using MF or Cog free forging followed by die forging.

The Strength Evaluation of Al5083-O GMA Welding Zone According to the Heat Input and Mixing Shield Gas Ratio (Al5083-O GMA 용접부의 입열량과 보호가스 혼합비율에 따른 강도 평가)

  • 이동길;양훈승;정재강
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.10 no.6
    • /
    • pp.158-165
    • /
    • 2002
  • This study was to evaluate mechanical properties and toughness of the Al5083-O aluminum alloy welding zone according to the mixing shield gas ratio and heat input change. The GMA(Gas Metal Arc) welding of the base metal was carried out with four different mixing shield gas ratios(Ar100%+He0%, Ar67%+He33%, Ar50%+He50%, and Ar33%+He67%) and three different heat inputs(low, medium, and high). To investigate the Charpy absorbed energy of the weld zone, the specimens were divided base metal, weld metal, fusion line, and HAZ notched specimen according to the worked notch position. The different gas ratio and heat input had little effect upon the tensile strength. But Ar33%+He67% mixture had the greatest mechanical properties considering that the more He gas ratio concentrations, the higher yield strength and elongation. The maximum load and displacement of the weld metal notche specimen was so much low more than that of the base metal, but fusion line and HAZ notched specimens showed almost same regardless of the mixing shield gas ratio and heat input. The Charpy absorbed energy was lowest in weld metal notched specimen, and increased in the fusion line, and HAZ notche specimen in order. Ar33%+He67% mixture had the greatest toughness considering that the more He gas ratio, the higher absorption energy.

The Behavior of Tensile Fracture for Al/CFRP Hybrid Composite Material (Al/CFRP 하이브리드 복합재료의 인장파괴거동)

  • Kang, Ji-Woong;Kwon, Oh-Heon;Ryu, Jin-Gyu
    • Journal of the Korean Society of Safety
    • /
    • v.24 no.2
    • /
    • pp.23-29
    • /
    • 2009
  • The hybrid composite materials are recently used in many field as an advanced material due to their high resistance to fracture. However, hybrid composite materials have several problems, especially delamination, compared with homogeneous materials such as an aluminum alloy, etc. In this study, we carried out the tensile test to study the tension failure appearances and tensile ultimate strength of CFRP/Al/CFRP hybrid composite materials. The CFRP material used in the experiment is a commercial material known as CU175NS in unidirectional carbon prepreg. Also Al/CFRP/Al hybrid composites with three kind length of a single edge crack were investigated for the relationship between an aluminium volume fraction and a crack length. The crack length was measured by a traveling microscope under a universal dynamic tester. Futhermore the stress intensity factor behavior was examined according to a volume fraction and an initial crack length ratio to a width.

Developing improvement technology in pre-etching process for the Shadow Mask quality of flat color TV

  • Park, Jong-Moo;Park, Kwang-Ho;Jung, Hyo-Jin
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2003.07a
    • /
    • pp.1164-1167
    • /
    • 2003
  • Recently CRT is getting flatted, As change of CRT trend from normal type to Flat type, the material of Shadow Mask was also changed from AK(Aluminum Killed) to Invar(Fe-Ni alloy) materials Until now we have used just AK(Aluminum Killed) for normal type TV(not flat type), but main raw material of shadow mask component was changed. . However recently Invar(Fe-Ni alloy) materials, which has advantage of Low Thermal Expansion and High Strength, has been developed as well as applying in mass production as CRT's trend has become more flat and fine pitch. As main raw material of shadow mask component was changed, conditions of process were changed. One of them, the importance of pre-etching process (assistant process for developing & etching) is improved because there are so many particles in the pre-etching bath because of Ni compounds. Since the solubility of Ni in pre-etching solvent is very low related to Fe's, so the compounds of Ni happen to make particles.(the solubility of Fe is twenty times Ni's) that particles happen to make process troubles and NG productions so to clear the particles we had to established high cost filtering system, but it is useless. As time goes by the quantity of particles (Ni compounds) was increased because of the capability of filtering system was not enough, the particles was produced continuous in bath, and it make quality problems. Hence we tried to develop the new pre-etching solution to remove the particles (Ni compounds) and to cost down the filtering system's running cost. But in improving the solution we discovered the new pre-etching solution made the PR developing better. In former solution there were three kinds of chemistry (COOH)2 , H2O2 , H2S04 .first the function of (COOH)2 is drilling the surface of Invar, during this mechanism Ni compounds occurred. Second the function of H202 is removing the PR fringe (half UV exposure zone on PR(PVA)), Third the function of H2S04 is the catalysis of (COOH)2 In those, (COOH)2 was the main reason to make the Ni compounds. So to improve the solutions we had to change (COOH)2 to the other material. the chemistry we improved was a complex chemistry based on H2S04 . after using this chemistry the particles problem was disappeared and there was another advantage cut down the PR fringe. The New solution made the function of H202 better so the PR developing improved. To be direct the catalyst of the new solution helped the H202. anyway First thing after change the solution the quality of shadow Mask for flat color TV was improved & the yield also improved. But the more important thing is how to control the new solution. So we accepted the new concept which was the degree of freshness. The degree of freshness is based on non-reacted solution which was 100% ( the degree of freshness) and calculated the melted Ni quantity as time goes by. So we made the gauging liner plot. In conclusion, many companies tried to make fine pitched Shadow Mask ,generally to make quality jump up it needed a lot of cost & persons .in this case the shift of core material made it possible.

  • PDF

Asymmetric Yield Functions Based on the Stress Invariants J2 and J3(II) (J2 와 J3 불변량에 기초한 비대칭 항복함수의 제안(II))

  • Kim, Y.S;Nguyen, P.V.;Ahn, J.B.;Kim, J.J.
    • Transactions of Materials Processing
    • /
    • v.31 no.6
    • /
    • pp.351-364
    • /
    • 2022
  • The yield criterion, or called yield function, plays an important role in the study of plastic working of a sheet because it governs the plastic deformation properties of the sheet during plastic forming process. In this paper, we propose a modified version of previous anisotropic yield function (Trans. Mater. Process., 31(4) 2022, pp. 214-228) based on J2 and J3 stress invariants. The proposed anisotropic yield model has the 6th-order of stress components. The modified version of the anisotropic yield function in this study is as follows. f(J20,J30) ≡ (J20)3 + α(J30)2 + β(J20)3/2 × (J30) = k6 The proposed anisotropic yield function well explains the anisotropic plastic behavior of various sheets such as aluminum, high strength steel, magnesium alloy sheets etc. by introducing the parameters α and β, and also exhibits both symmetrical and asymmetrical yield surfaces. The parameters included in the proposed model are determined through an optimization algorithm from uniaxial and biaxial experimental data under proportional loading path. In this study, the validity of the proposed anisotropic yield function was verified by comparing the yield surface shape, normalized uniaxial yield stress value, and Lankford's anisotropic coefficient R-value derived with the experimental results. Application for the proposed anisotropic yield function to AA6016-T4 aluminum and DP980 sheets shows symmetrical yielding behavior and to AZ31B magnesium shows asymmetric yielding behavior, it was shown that the yield locus and yielding behavior of various types of sheet materials can be predicted reasonably by using the proposed anisotropic yield function.

Effect of Mg Addition on the Microstructure and Mechanical Properties of Al-Li-Ce Alloys (Al-Li-Ce계 합금의 미세조직 및 기계적 특성에 미치는 Mg 첨가의 영향)

  • Byeong-Kwon Lee;Eun-Chan Ko;Yong-Ho Kim;Hyo-Sang Yoo;Hyeon-Taek Son;Sung-Kil Hong
    • Korean Journal of Materials Research
    • /
    • v.33 no.10
    • /
    • pp.393-399
    • /
    • 2023
  • In this study, changes in the microstructure and mechanical properties of cast and extruded Al-2Li-1Ce alloy materials were investigated as the Mg content was varied. The density decreased to 2.485, 2.46 and 2.435 g/cm3 when the Mg content in the Al-2Li-1Ce alloy was increased to 2, 4 and 6 wt%, respectively. Intermetallic compounds of Al11Ce3 were observed in all alloys, while the β-phase of Al3Mg2 was observed in alloys containing 6 wt% of Mg. In the extruded material, with increasing Mg content the average grain size decreased to 84.8, 71.6 and 36.2 ㎛, and the fraction of high-angle grain boundaries (greater than 15°) increased to 82.8 %, 88.6 %, and 91.8 %, respectively. This occurred because the increased Mg content promotes dynamic recrystallization during hot extrusion. Tensile test results showed that as the Mg content increased, both the yield strength and tensile strength increased. The yield strength reached 86.1, 107.3, and 186.4 MPa, and the tensile strength reached 215.2, 285, and 360.5 MPa, respectively. However, it is worth noting that the ductility decreased to 27.78 %, 25.65 %, and 20.72 % as the Mg content increased. This reduction in ductility is attributed to the strengthening effect resulting from the increased amount of dissolved Mg, and grain refinement due to dynamic recrystallization.

High Strength Nanostructured Metastable Alloys

  • Eckert, Jurgen;Bartusch, Birgit;Schurack, Frank;He, Guo;Schultz, Ludwig
    • Journal of Powder Materials
    • /
    • v.9 no.6
    • /
    • pp.394-408
    • /
    • 2002
  • Nanostructured high strength metastable Al-, Mg- and Ti-based alloys containing different amorphous, quasicrystalline and nanocrystalline phases are synthesized by non-equilibrium processing techniques. Such alloys can be prepared by quenching from the melt or by powder metallurgy techniques. This paper focuses on one hand on mechanically alloyed and ball milled powders containing different volume fractions of amorphous or nano-(quasi)crystalline phases, consolidated bulk specimens and, on the other hand. on cast specimens containing different constituent phases with different length-scale. As one example. $Mg_{55}Y_{15}Cu_{30}$- based metallic glass matrix composites are produced by mechanical alloying of elemental powder mixtures containing up to 30 vol.% $Y_2O_3$ particles. The comparison with the particle-free metallic glass reveals that the nanosized second phase oxide particles do not significantly affect the glass-forming ability upon mechanical alloying despite some limited particle dissolution. A supercooled liquid region with an extension of about 50 K can be maintained in the presence of the oxides. The distinct viscosity decrease in the supercooled liquid regime allows to consolidate the powders into bulk samples by uniaxial hot pressing. The $Y_2O_3$ additions increase the mechanical strength of the composites compared to the $Mg_{55}Y_{15}Cu_{30}$ metallic glass. The second example deals with Al-Mn-Ce and Al-Cu-Fe composites with quasicrystalline particles as reinforcements, which are prepared by quenching from the melt and by powder metallurgy. $Al_{98-x}Mn_xCe_2$ (x =5,6,7) melt-spun ribbons containing a major quasicrystalline phase coexisting with an Al-matrix on a nanometer scale are pulverized by ball milling. The powders are consolidated by hot extrusion. Grain growth during consolidation causes the formation of a micrometer-scale microstructure. Mechanical alloying of $Al_{63}Cu_{25}Fe_{12}$ leads to single-phase quasicrystalline powders. which are blended with different volume fractions of pure Al-powder and hot extruded forming $Al_{100-x}$$(Al_{0.63}Cu_{0.25}Fe_{0.12})_x$ (x = 40,50,60,80) micrometer-scale composites. Compression test data reveal a high yield strength of ${\sigma}_y{\geq}$700 MPa and a ductility of ${\varepsilon}_{pl}{\geq}$5% for than the Al-Mn-Ce bulk samples. The strength level of the Al-Cu-Fe alloys is ${\sigma}_y{\leq}$550 MPa significantly lower. By the addition of different amounts of aluminum, the mechanical properties can be tuned to a wide range. Finally, a bulk metallic glass-forming Ti-Cu-Ni-Sn alloy with in situ formed composite microstructure prepared by both centrifugal and injection casting presents more than 6% plastic strain under compressive stress at room temperature. The in situ formed composite contains dendritic hcp Ti solid solution precipitates and a few $Ti_3Sn,\;{\beta}$-(Cu, Sn) grains dispersed in a glassy matrix. The composite micro- structure can avoid the development of the highly localized shear bands typical for the room temperature defor-mation of monolithic glasses. Instead, widely developed shear bands with evident protuberance are observed. resulting in significant yielding and homogeneous plastic deformation over the entire sample.

Development of Automatic Filling Process for Rapid Manufacturing by High-speed Machining Process (고속가공에 의한 쾌속제작용 자동충진 공정개발)

  • 신보성;양동열;최두선;이응숙;제태진;김기돈;이종현;황경현
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.28-31
    • /
    • 2001
  • Recently, in order to satisfy the consumer's demand the life cycle and the lead-time of a product is to be shortened. It is thus important to reduce the time and cost in manufacturing trial products. Several techniques have been developed and successfully commercialized in the market RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome this problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP process. HisRP is a combination process using high-speed machining technology with automatic filling. In filling process, Bi58-Sn alloy is chosen because of the properties of los-melting point, low coefficient of thermal expansion and enviromental friendship. Also the use of filling wire is of advantage in term of simple and flexible mechanism. Then the rapid manufacturing product, for example a skull, is machined for aluminum material by HisRP process with an automatic set-up device of 4-faces machining.

  • PDF

Development of Automatic Filling Process using Low-Melting Point Metal for Rapid Manufacturing with Machining Process (절삭가공과 저융점금속에 의한 쾌속제작용 자동충진공정 개발)

  • Shin, Bo-Seong;Yang, Dong-Yeol;Choi, Du-Seon;Kim, Ki-Don;Lee, Eung-Suk;Je, Tae-Jin;Hwang, Kyeong-Hyeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.19 no.3
    • /
    • pp.88-94
    • /
    • 2002
  • Recently, the life cycle and the lead-time of a product are to be shortened in order to satisfy consumer's demand. It is thus important to reduce the time and cost in manufacturing trial products. Several technique have been developed and successfully commercialized in the market of RPM(Rapid Prototyping and Manufacturing). However, most commercial systems currently use resins or waxes as the raw materials. So, the limited mechanical strength for functional testing is regarded as an obstacle towards broader application of rapid prototyping techniques. To overcome these problems, high-speed machining technology is being investigated worldwide for rapid manufacturing and even for direct rapid tooling application. In this paper, some fundamental experiments and analyses are carried out to obtain the filling time, materials, method, and process parameters for HisRP(High-Speed RP) process. HisRP is a new RP process that is combined high-speed machining with automatic filling. In filling process, Bi58-Sn alloy is chosen as filling material because of the properties of low-melting point, low coefficient of thermal expansion and no harm to environment. Also the use of filling wire it if advantage since it needs simple and flexible mechanism. Then the rapid product, for example a skull, is manufactured for aluminum material by HisRP process with an automatic set-up device thor 4-faces machining.