• Title/Summary/Keyword: high speed mode

Search Result 1,015, Processing Time 0.026 seconds

A Study on the Characteristics of Modern Fashion Design for Digital Nomadic Culture (디지털 유목민 문화를 위한 현대 패션디자인의 특성 연구)

  • Kim, Jee-Hee
    • Fashion & Textile Research Journal
    • /
    • v.9 no.1
    • /
    • pp.6-14
    • /
    • 2007
  • The purpose of this study was to delve into what type of expression mode of fashion design could suit the life style of digital nomads, as the appearance of nomadic life style was concurrent with people's modified way of thinking and sociocultural changes in today's digital society. It's basically meant to define the roles of fashion design, which was discussed as a way of improving the quality of life as a sort of 'culture,' and to suggest some of the right directions for fashion design in the future. The culture of today's digital era is marked by a pursuit of high mobility and high speed, and by nomadic disposition that is built on flexible thinking. The kind of design that lets people carry nomadic things with them and thereby improve their mobility can satisfy their needs for mobility, and body-friendly design that functions as a device of information in itself can meet their needs for mobility as well. The leading example of the latter is a wearable computer, and wearable scientific technology will be taken to another level, thanks to the advance in digital technology. In the future, that will be more accessible to people in general, and subminiature digital equipment will gain popularity in fashion industry as part of textiles and clothing or as an accessory. And specific kinds of design will be widespread, including variable design, multi-functional design and modular design. The first serves as a tool to protect the human body and to facilitate the adaptability of it to the given circumstances, and the second is characterized by a superb physical and psychological protectability. The third lets wearers bring design to completion at their own option, owing to an increase in the number of open-minded people and the development of interactive media. All these types of design could be called a wearer-friendly, human-oriented design that is specifically appropriate for the digital age. Wearers can actively be involved in design process as productive consumers, which is expected to help increase opener practices in fashion design sector.

Performance Analysis of HDR-WPAN System with MIMO Techniques (MIMO 기법을 적용한 HDR-WPAN 시스템의 성능분석)

  • Han Deog-Su;Kang Chul-Gyu;Oh Chang-Heon;Cho Sung-Joon
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.10 no.8
    • /
    • pp.1502-1509
    • /
    • 2006
  • In this paper, we proposed reliability and capacity enhancement methods for IEEE 802.15.3 HDR-WPAN (High Data Rate-Wireless Personal Area Network) system which is currently getting an interest in home network technology adopting a MIMO technique. We also analyzed performance or the proposed system through a computer simulation. The HDR-WPAN system using V-BLAST algorithm, transmitting the different signal vector to each other's sub-channel, can get the transmission speed of more than 110Mbps using two Tx/Px antenna without bandwidth expansion in TCM-64QAM mode. Also the proposed system has reliability of 104 at $E_b/N_0=35dB$ under the Rayleigh fading channel in case of two Tx/Rx antenna with MMSE algorithm. The HDR-WPAN system adopting V-BLAST method has its drawback which is very complicated to determine the decision-ordering at the receiver. But, the proposed system enhances the transmission capacity and reliability without extra bandwidth expansion by sending data streams to multiple antennas.

Risk identification, assessment and monitoring design of high cutting loess slope in heavy haul railway

  • Zhang, Qian;Gao, Yang;Zhang, Hai-xia;Xu, Fei;Li, Feng
    • Structural Monitoring and Maintenance
    • /
    • v.5 no.1
    • /
    • pp.67-78
    • /
    • 2018
  • The stability of cutting slope influences the safety of railway operation, and how to identify the stability of the slope quickly and determine the rational monitoring plan is a pressing problem at present. In this study, the attribute recognition model of risk assessment for high cutting slope stability in the heavy haul railway is established based on attribute mathematics theory, followed by the consequent monitoring scheme design. Firstly, based on comprehensive analysis on the risk factors of heavy haul railway loess slope, collapsibility, tectonic feature, slope shape, rainfall, vegetation conditions, train speed are selected as the indexes of the risk assessment, and the grading criteria of each index is established. Meanwhile, the weights of the assessment indexes are determined by AHP judgment matrix. Secondly, The attribute measurement functions are given to compute attribute measurement of single index and synthetic attribute, and the attribute recognition model was used to assess the risk of a typical heavy haul railway loess slope, Finally, according to the risk assessment results, the monitoring content and method of this loess slope were determined to avoid geological disasters and ensure the security of the railway infrastructure. This attribute identification- risk assessment- monitoring design mode could provide an effective way for the risk assessment and control of heavy haul railway in the loess plateau.

Design and Implementation of Modified Current Source Based Hybrid DC - DC Converters for Electric Vehicle Applications

  • Selvaganapathi, S.;Senthilkumar, A.
    • Transactions on Electrical and Electronic Materials
    • /
    • v.17 no.2
    • /
    • pp.57-68
    • /
    • 2016
  • In this study, we present the modern hybrid system based power generation for electric vehicle applications. We describe the hybrid structure of modified current source based DC - DC converters used to extract the maximum power from Photovoltaic (PV) and Fuel Cell system. Due to reduced dc-link capacitor requirement and higher reliability, the current source inverters (CSI) better compared to the voltage source based inverter. The novel control strategy includes Distributed Maximum Power Point Tracking (DMPPT) for photovoltaic (PV) and fuel cell power generation system. The proposed DC - DC converters have been analyzed in both buck and boost mode of operation under duty cycle 0.5>d, 0.5<d<1 and 0.5<d for capable electric vehicle applications. The proposed topology benefits include one common DC-AC inverter that interposes the generated power to supply the charge for the sharing of load in a system of hybrid supply with photovoltaic panels and fuel cell PEM. An improved control of Direct Torque and Flux Control (DTFC) based induction motor fed by current source converters for electric vehicle.In order to achieve better performance in terms of speed, power and miles per gallon for the expert, to accepting high regenerative braking current as well as persistent high dynamics driving performance is required. A simulation model for the hybrid power generation system based electric vehicle has been developed by using MATLAB/Simulink. The Direct Torque and Flux Control (DTFC) is planned using Xilinx ISE software tool in addition to a Modelsim 6.3 software tool that is used for simulation purposes. The FPGA based pulse generation is used to control the induction motor for electric vehicle applications. FPGA has been implemented, in order to verify the minimal error between the simulation results of MATLAB/Simulink and experimental results.

Low-Temperature Si and SiGe Epitaxial Growth by Ultrahigh Vacuum Electron Cyclotron Resonance Chemical Vapor Deposition (UHV-ECRCVD)

  • Hwang, Ki-Hyun;Joo, Sung-Jae;Park, Jin-Won;Euijoon Yoon;Hwang, Seok-Hee;Whang, Ki-Woong;Park, Young-June
    • Proceedings of the Korea Association of Crystal Growth Conference
    • /
    • 1996.06a
    • /
    • pp.422-448
    • /
    • 1996
  • Low-temperature epitaxial growth of Si and SiGe layers of Si is one of the important processes for the fabrication of the high-speed Si-based heterostructure devices such as heterojunction bipolar transistors. Low-temperature growth ensures the abrupt compositional and doping concentration profiles for future novel devices. Especially in SiGe epitaxy, low-temperature growth is a prerequisite for two-dimensional growth mode for the growth of thin, uniform layers. UHV-ECRCVD is a new growth technique for Si and SiGe epilayers and it is possible to grow epilayers at even lower temperatures than conventional CVD's. SiH and GeH and dopant gases are dissociated by an ECR plasma in an ultrahigh vacuum growth chamber. In situ hydrogen plasma cleaning of the Si native oxide before the epitaxial growth is successfully developed in UHV-ECRCVD. Structural quality of the epilayers are examined by reflection high energy electron diffraction, transmission electron microscopy, Nomarski microscope and atomic force microscope. Device-quality Si and SiGe epilayers are successfully grown at temperatures lower than 600℃ after proper optimization of process parameters such as temperature, total pressure, partial pressures of input gases, plasma power, and substrate dc bias. Dopant incorporation and activation for B in Si and SiGe are studied by secondary ion mass spectrometry and spreading resistance profilometry. Silicon p-n homojunction diodes are fabricated from in situ doped Si layers. I-V characteristics of the diodes shows that the ideality factor is 1.2, implying that the low-temperature silicon epilayers grown by UHV-ECRCVD is truly of device-quality.

  • PDF

Totem-pole Bridgeless Boost PFC Converter Based on GaN FETs (GaN FET을 이용한 토템폴 구조의 브리지리스 부스트 PFC 컨버터)

  • Jang, Paul;Kang, Sang-Woo;Cho, Bo-Hyung;Kim, Jin-Han;Seo, Han-Sol;Park, Hyun-Soo
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.20 no.3
    • /
    • pp.214-222
    • /
    • 2015
  • The superiority of gallium nitride FET (GaN FET) over silicon MOSFET is examined in this paper. One of the outstanding features of GaN FET is low reverse-recovery charge, which enables continuous conduction mode operation of totem-pole bridgeless boost power factor correction (PFC) circuit. Among many bridgeless topologies, totem-pole bridgeless shows high efficiency and low conducted electromagnetic interference performance, with low cost and simple control scheme. The operation principle, control scheme, and circuit implementation of the proposed topology are provided. The converter is driven in two-module interleaved topology to operate at a power level of 5.5 kW, whereas phase-shedding control is adopted for light load efficiency improvement. Negative bias circuit is used in gate drivers to avoid the shoot-through induced by high speed switching. The superiority of GaN FET is verified by constructing a 5.5 kW prototype of two-module interleaved totem-pole bridgeless boost PFC converter. The experiment results show the highest efficiency of 98.7% at 1.6 kW load and an efficiency of 97.7% at the rated load.

A Study on the Full-HD HEVC Encoder IP Design (고해상도 비디오 인코더 IP 설계에 대한 연구)

  • Lee, Sukho;Cho, Seunghyun;Kim, Hyunmi;Lee, Jehyun
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.52 no.12
    • /
    • pp.167-173
    • /
    • 2015
  • This paper presents a study on the Full-HD HEVC(High Efficiency Video Coding) encoder IP(Intellectual Property) design. The designed IP is for HEVC main profile 4.1, and performs encoding with a speed of 60 fps of full high definition. Before hardware and software design, overall reference model was developed with C language, and we proposed a parallel processing architecture for low-power consumption. And also we coded firmware and driver programs relating IP. The platform for verification of developed IP was developed, and we verified function and performance for various pictures under several encoding conditions by implementing designed IP to FPGA board. Compared to HM-13.0, about 35% decrease in bit-rate under same PSNR was achieved, and about 25% decrease in power consumption under low-power mode was performed.

Position Control of Linear Motor by Using Enhanced Cross-Coupling Algorithm (개선된 교차축 연동제어기를 이용한 리니어 모터의 위치제어)

  • Han, Sang-Oh;Huh, Kun-Soo
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.34 no.3
    • /
    • pp.369-374
    • /
    • 2010
  • Linear motors are easily affected by load disturbances, force ripples, friction, and parameter variations because there are no mechanical transmissions that can reduce the effects of model uncertainties and external disturbance. In this study, a nonlinear adaptive controller to achieve high-speed/high-accuracy position control of a two-axis linear motor is designed. The operation of this controller is based on a cross-coupling algorithm. Nonlinear effects such as friction and force ripples are estimated and compensated for. An enhanced cross-coupling algorithm is proposed for effectively improving the biaxial contour accuracy while achieving closed-loop stability. The proposed controller is evaluated by performing computer simulations.

High Efficiency Switch-Mode LED driver for Visible Light Communication System (가시광 통신 시스템을 위한 고효율 스위치모드 LED 구동회로)

  • Kang, Jung-Min;Cho, Sang-Ho;Hong, Sung-Soo;Han, Sang-Kyoo;SaKong, Suk-Chin
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.358-365
    • /
    • 2011
  • Recently, the LED(Light Emitting Diode) replacing incandescent light bulbs and fluorescent light has great attentions as a most promising candidate for the next generation lighting source due to its environment-friendly characteristics, long life and excellent efficiency. Moreover, since it is a semiconductor device which can convert the electric energy to visible light at a very high speed, it can also used as a communication device. Therefore, the VLC(Visible Light Communication) using the LED can perform the near field communication and lighting function at the same time without additional expenses. However, since the switching device of the conventional LED driver for VLC is operated in the linear region, there exist several drawbacks such as a poor power conversion efficiency and serious heat generation. On the other hand, since the proposed driver is operated in the on/off switching region, it features a higher efficiency and more improved heat generation. To verify the validity of the proposed LED driver, experimental results from a prototype of 20W rated LED driver applied to 3MHz bps broadcasting audio system are given.

A study on the design optimization of the head stucture of 5-axis machining center using finite element analysis (유한요소해석을 이용한 5축 복합가공기 헤드 구조물의 최적 설계에 관한 연구)

  • Kim, Jae-Seon;Lee, Meong-Ho;Youn, Jae-Woong
    • Journal of the Korea Convergence Society
    • /
    • v.12 no.9
    • /
    • pp.161-168
    • /
    • 2021
  • As the demand for high speed and high precision increases in the field of machine tool, interest in stiffness and vibration of machine tool is increasing. However, it takes a lot of time to develop a detailed design of machine tool based on experience, and it is difficult to design appropriately. Recently, structural optimization using FEM are increasingly used in machine tool design. But, it is difficult to optimize in consideration of the vibration state of the structure since optimization through stress distribution of a structure is mainly used, In this paper, Static structural analysis, mode analysis, and harmonic analysis using FEM were conducted to optimize the head structure that has the most influence on machining in a 5-axis machine tool. It is proposed a topology optimization analysis method that considers both static stiffness and dynamic stiffness using objective function design.