• Title/Summary/Keyword: high speed mode

Search Result 1,015, Processing Time 0.027 seconds

Experimental Research on Lubricant Oil in Dual Fuel Medium-Speed Engines (중속용 Dual Fuel엔진의 윤활유에 관한 실험적 연구)

  • Hong, Sung-Ho;Park, Chang-Hoon;Park, Jungdo;Eddie, Chen
    • Tribology and Lubricants
    • /
    • v.32 no.3
    • /
    • pp.82-87
    • /
    • 2016
  • We performed an experimental research on lubricant oil in dual fuel medium-speed engines. It is important to select the appropriate lubricant oil because it could significantly affect engine lifetime and performance. We generally recommend the selection of the lubricant oil according to the fuel grades as contents in the project guide. However, it is a considerable challenge for shipyards to implement this concept because of the lack of space to install the complicated lubricating oil system for dual fuel engines. Therefore, we determine the adaptability of one-common lubricant oil for HiMSEN dual fuel engine through this experimental research. To check abnormality in gas mode operation and durability of engine components when a lubricating oil with high BN (base number) is used, overhaul inspections and lubricant oil analysis are carried out two times, and four times, respectively, during an operation of approximately 300 h. We investigated the variations in kinematic viscosity, base number, element quantity, pentane insoluble and sulfated ash in lubricant oil analysis. Moreover, we also investigated whether the deposit formation or wear occurred in various bearings, injectors, exhaust valves, intake valves, piston rings and so on through the overhaul inspections. There are no problems in the lubricant analysis and the overhaul inspections. Through the experimental research, we confirm that one-common lubricant oil should be selected according to the higher sulfur content of fuel oil in dual fuel engines.

An Experimental Study on the Spray Characteristics of a Rotating Fuel Nozzle of a Slinger Combustor for Different Flow Rates and Rotating Speeds (슬링거 연소기 회전연료노즐의 유량과 회전수에 따른 분무특성에 대한 실험적 연구)

  • Shim, Hyeon-Seok;Bae, Jonggeun;Kim, Jupyoung;Kim, Shaun;Kim, Donghyun;Ryu, Gyongwon
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.25 no.4
    • /
    • pp.59-70
    • /
    • 2021
  • An experimental study was conducted to observe the spray characteristics for different flow rates and rotating speeds of a rotating fuel nozzle of a slinger combustor. The water spray ejected from the nozzle orifice was visualized using a high-speed camera and a light source. It was confirmed that the atomization was improved, as the flow rate decreased and rotating speed increased. The characteristic maps for the spray characteristics and performance parameters showed that the aerodynamic Weber number and the liquid-air momentum flux ratio were associated with the liquid primary breakup, and the liquid-air momentum flux ratio and Rossby number were closely correlated with the liquid ejection mode.

Agitation Effects of an Ultrasonic Standing Wave on the Dynamic Behavior of Methane/Air Premixed Flame (메탄/공기 예혼합화염의 동역학적 거동과 정상초음파의 교반)

  • Seo, Hang-Seok;Lee, Sang-Shin;Kim, Jeong-Soo
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.16 no.3
    • /
    • pp.16-23
    • /
    • 2012
  • This study has been conducted to scrutinize agitation effects of an ultrasonic standing wave on the dynamic behavior of methane/air premixed flame. The propagating flame was caught by high-speed Schlieren images, through which local flame velocities of the moving front were analyzed in unprecedent detail. It is revealed that the propagation velocity agitated by the ultrasonic standing wave is greater than that without agitation at the stoichiometric ratio: the velocity enhancement diminishes as the equivalence ratio approaches upper flammability limit or lower flammability limit. Also, vertical locations of the wave-affected frontal distortions do not vary appreciably, unless the propagating-mode characteristics (pressure amplitude and driving frequency) of ultrasonic standing wave were not changed.

A Study on Life Prediction of Hydraulic Piston Pump (유압 피스톤 펌프의 수명 예측 연구)

  • Kim, Kyungsoo;Lee, Jihwan;Kang, Myeongcheol;Ryuh, Beomsahng
    • Journal of the Korea Institute of Military Science and Technology
    • /
    • v.21 no.5
    • /
    • pp.607-613
    • /
    • 2018
  • Hydraulic systems are widely used in the field of defense, construction machinery, agricultural machinery, and general industries, due to various advantages such as quick response speed and precision control. The defense equipments such as light rescue vehicle is operated in very harsh environments, so hydraulic components used in defense equipment are required to have very high reliability. In particular, hydraulic piston pump is very important component in a hydraulic systems, so life prediction of pump is essential. Therefore, in this study, we analyze the potential failure and the main failure mode of the hydraulic piston pump for the light rescue vehicle through the FMEA analysis, and predict the life of the pump by the accelerated life test considering the usage conditions.

그룹의사결정지원을 위한 인터넷 기능개선 방향

  • Heo, Yeong-Jong
    • Asia pacific journal of information systems
    • /
    • v.6 no.2
    • /
    • pp.107-124
    • /
    • 1996
  • This research studied future directions of Internet technology toward supporting group decision making. From the previous research, this study classified requirements of group decision support systems into three categories which are information transfer, information provision, and communication control. For each of the category, this study analyzed the limits of current Internet functions. Next, this research discussed technological solutions, for each of the OSI 7 layers, toward supporting group decision making. Additional functions in Internet which are required for group supporting are tracing communications, application dependent coding, selection of communication modes, and security handling. For high speed data communication in Internet, this research discussed the potential of cell-switching technology for the lower level link in Internet. The conclusions of this research can be used for designing future group decision support systems and development of Internet.

  • PDF

Thrust Simulation and Experiments for Underwater Thrusters (수중추진기의 추진력 시뮬레이션 및 실험)

  • Ahn, Yong-Seok;Baek, Woon-Kyung
    • Journal of Power System Engineering
    • /
    • v.21 no.3
    • /
    • pp.51-59
    • /
    • 2017
  • In the early design stage of underwater vehicles, it is important to estimate the vehicle's underwater motion performance. The key design elements for the motion are propellers, battery power, and underwater resistance of the vehicle. Small thrusters with motor and propeller are usually used for the UUV(unmanned underwater vehicles). In this study, a multiphysics thruster model combining electro-mechanical and hydrodynamics characteristics was proposed to estimate the thruster performance. To show the applicability of the mathematical model, an sample thruster was used for the derive the unknown parameters of thruster. Hydrodynamic parameters were calculated for a 3D geometry model of the propeller by ANSYS/CFX program. Finally, Matlab/simulink program was used for the numerical simulation to predict the thruster performance from the given voltage/current input to the motor. Also, proved validity of simulation model by experiment test. Test were done by 2 mode(middle/high speed, reverse). The thruster performance curves obtained from this simulation were confirmed to be similar with experiment results.

Structural Modification for Noise Reduction of the Blower Case in a Fuel Cell Passenger Car Based on the CAE Technology (승용연료전지 자동차용 블로워 케이스의 방사소음 저감을 위한 CAE 이용 구조변경에 관한 연구)

  • Song, Min-Keun;Lee, Sang-Kwon;Seo, Sang-Hoon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.9
    • /
    • pp.972-981
    • /
    • 2008
  • The blower which is installed in a FCEV(fuel cell electric vehicle) may cause noise due to misalignment and unbalance of mechanical components that rotate at high speed. One of the key points in efforts to minimize the noise radiation from a blower is the knowledge of the main radiating component and the relation between the surface vibration of a blower and the sound pressure. In this research, the blower model is developed based on FEM(finite element method). FE(finite element) model is reliable by correlation of frequencies and MAC(modal assurance criterion) values between EMA(experimental modal analysis) and FEA(finite element analysis). This model is applied to predict the vibration of a blower by using inverse force identification method and predict the radiating noise by using BEM(boundary element method). Comparing the frequencies of resonance and those mode shapes between EMA and FEA, a structural modification of the FE model is evaluated for reducing the parameters of the blower noise.

A Study on the Design of the Flywheel Energy Storage Device to Store the Regenerative Energy (회생에너지 저장용 플라이휠 에너지 저장 장치 설계에 관한 연구)

  • Lee, Jun-Ho;Park, Chan-Bae;Lee, Byeong-Song
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.62 no.7
    • /
    • pp.1045-1052
    • /
    • 2013
  • In this study we deal with design procedures for the flywheel energy storage system that has the capacity to store the regenerative energy produced from the railway vehicles. The flywheel energy storage system (FESS) stores the regenerative electrical energy into the high speed rotational flywheel, by conversion the electrical energy into the mechanical rotational energy. Thus the FESS is composed of the energy conversion components, such as the motor and generator, mechanical support components, such as the rotational rotor, the magnetic bearings to support the rotor, and the digital controller to control the air gap between the rotor and the magnetic bearings. In this paper the design procedures for the rotor operating at the rigid mode and the magnetic bearings to support the rotational rotor without contact are presented.

Control of Combustion Instabilities in a Gas Turbine Combustors Through Secondary Fuel Injection (가스터빈 연소기내 2차연료분사에 의한 연소 불안정성의 제어)

  • Jeon, C.H.;Santavicca, Domenic A.
    • Journal of the Korean Society of Combustion
    • /
    • v.3 no.1
    • /
    • pp.59-69
    • /
    • 1998
  • The results of study on the active control of naturally occurring combustion oscillations with a single dominant frequency in an atmospheric dump combustor are presented. Control was achieved by an oscillatory infection of secondary fuel at the dump plane. A high speed solenoid valve with a maximum frequency of 250Hz was used as the actuator and a sound level meter, located at the combustor exit, measured the pressure fluctuations which served as the feedback signal for the control loop. Instability characteristics were mapped over a range of mean mixing section velocities from 6.7 m/s-9.3 m/s and with three mixing conditions. Different fuel/air mixing conditions were investigated by introducing varying percentages of primary fuel at two locations, one at the entrance to the mixing section and one 6 mixing tube diameters upstream of the dump plane. Control studies were conducted at a mean velocity of 9.3 m/s, with an air temperature of $415^{\circ}C$, and from flame blowout to the stoichiometric condition.

  • PDF

Analytical Study on Performance Parameters of High Speed Propulsion (Ramjet/Scramjet) (초고속 순항 추진기관(램제트/스크램제트)의 성능인자에 대한 해석적 연구)

  • Byun Jong-Ryul;Sung Hong-Gye;Yoon Hyun-Gull
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2005.11a
    • /
    • pp.141-146
    • /
    • 2005
  • This paper presents a theoretical analysis of a ramjet and scramjet engine according to flight Mach numbers. The main objective of this study is to give physical understanding on the performance parameters and to provide a more unified treatment of the fundamentals of ramjet and scramjet propulsion, mainly based on analytical methods. The effects of flight Mach number, inlet characteristics, and combustion on the performance of ramjet and scramjet are analysed. The cycle analysis are conducted on both combustors with constant pressure and with constant cross-section area, on which comparisons are made. Also the optimal Mach number at the entry of the combustor is studied.

  • PDF