• Title/Summary/Keyword: high resolution seismic reflection method

Search Result 23, Processing Time 0.023 seconds

Study on the Applicability of Reflection Method using Ultrasonic Sweep Source for the Inspection of Tunnel Lining Structure - Physical Modeling Approach - (터널 지보구조 진단을 위한 초음파 스윕 발생원의 반사법 응용 가능성 연구 - 모형실험을 중심으로 -)

  • 김중열;김유성;신용석;현혜자
    • Proceedings of the Korean Geotechical Society Conference
    • /
    • 2001.03a
    • /
    • pp.167-174
    • /
    • 2001
  • Reflection method using ultrasonic source has been attempted to obtain the information about tunnel lining structures composed of lining, shotcrete, water barrier and voids at the back of lining. In this work, two different types of sources, i.e. single-pulse source and sweep source, can be used. Single-pulse source with short time duration has the frequency content whose amplitudes tend to be concentrated around the dominant frequency, whereas sweep source with long time duration denotes a flat distribution of relatively larger amplitude over a broad frequency band, although the peak to peak amplitude of single-pulse source wavelet is equivalent to that of sweep source one. In traditional seismic application, a single-pulse source(weight drop, dynamite) is typically used. However, to investigate the fine structure, as it is the case in the tunnel lining structure, the sweep wavelet can be also a desirable source waveform primarily due to the higher energy over a broad frequency band. For the investigation purposes of sweep source, a physical modeling is a useful tool, especially to study problems of wave propagation in the fine layered media. The main purpose of this work was using a physical modeling technique to explore the applicability of sweep source to the delineation of inner layer boundaries. To this end, a two-dimensional physical model analogous to the lining structure was built and a special ultrasonic sweep source was devised. The measurements were carried out in the sweep frequency range 10 ∼ 60 KHz, as peformed in the regular reflection survey(e.g. roll-along technique). The measured data were further rearranged with a proper software (cross-correlation). The resulting seismograms(raw data) showed quitely similar features to those from a single-pulse source, in which high frequency content of reflection events could be considerably emphasized, as expected. The data were further processed by using a regular data processing system "FOCUS" and the results(stack section) were well associated with the known model structure. In this context, it is worthy to note that in view of measuring condition the sweep source would be applied to benefit the penetration of high frequency energy into the media and to enhance the resolution of reflection events.

  • PDF

Identification of high-dip faults utilizing the GRM technique of seismic refraction method(Ⅱ) -Application to real data- (굴절파 GRM 해석방법을 응용한 고경사 단층 인지 (Ⅱ) -실제 자료 적용-)

  • Kim, Gi Yeong;U, Nam Cheol
    • Journal of the Korean Geophysical Society
    • /
    • v.2 no.1
    • /
    • pp.65-74
    • /
    • 1999
  • From refraction data along four seismic profiles near Eonyang which the Yangsan fault passes through, the Slope Variation Indicators (SVI) are computed and interpreted in terms of fault distribution. The average velocities of 2,250-2,870 m/s are estimated using velocity-analysis functions for the target boundary along those profiles. The average velocity for Line 1 is approximately 600 m/s lower than ones for the other lines. The SVI's with amplitude greater than or equal to 0.5 ms/m are turned out to be located near faults shown on the high-resolution reflection section, as closely as one station spacing (3 m). Large amplitude SVI's are densely distributed near National Road 35, and the fault having the largest vertical slip is indicated to be located approximately 930 m west of the inferred fault on the published geologic map.

  • PDF

Evaluation and interpretation of the effects of heterogeneous layers in an OBS/air-gun crustal structure study (OBS/에어건을 이용한 지각구조 연구에서 불균질층의 영향에 대한 평가와 해석)

  • Tsuruga, Kayoko;Kasahara, Junzo;Kubota, Ryuji;Nishiyama, Eiichiro;Kamimura, Aya;Naito, Yoshihiro;Honda, Fuminori;Oikawa, Nobutaka;Tamura, Yasuo;Nishizawa, Azusa;Kaneda, Kentaro
    • Geophysics and Geophysical Exploration
    • /
    • v.11 no.1
    • /
    • pp.1-14
    • /
    • 2008
  • We present a method for interpreting seismic records with arrivals and waveforms having characteristics which could be generated by extremely inhomogeneous velocity structures, such as non-typical oceanic crust, decollement at subduction zones, and seamounts in oceanic regions, by comparing them with synthetic waveforms. Recent extensive refraction and wide-angle reflection surveys in oceanic regions have provided us with a huge number of high-resolution and high-quality seismic records containing characteristic arrivals and waveforms, besides first arrivals and major reflected phases such as PmP. Some characteristic waveforms, with significant later reflected phases or anomalous amplitude decay with offset distance, are difficult to interpret using only a conventional interpretation method such as the traveltime tomographic inversion method. We find the best process for investigating such characteristic phases is to use an interactive interpretation method to compare observed data with synthetic waveforms, and calculate raypaths and traveltimes. This approach enables us to construct a reasonable structural model that includes all of the major characteristics of the observed waveforms. We present results here with some actual observed examples that might be of great help in the interpretation of such problematic phases. Our approach to the analysis of waveform characteristics is endorsed as an innovative method for constructing high-resolution and high-quality crustal structure models, not only in oceanic regions, but also in the continental regions.