• Title/Summary/Keyword: high reflectance

Search Result 535, Processing Time 0.014 seconds

Reflective Twist Nematic Liquid Crystal Display For High Reflectance.

  • Son, Ock-Soo;Park, Young-Il;Beak, Do-Hyoen;Son, Gon;Suh, Dong-Hea
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 2008.10a
    • /
    • pp.292-294
    • /
    • 2008
  • We have developed new reflective LCD for Mixed twist nematic LC mode with high quality image. We have found out an optimal twist angle of LC and optical film's axis by simulation. Also we measured electro-optic characteristics for new design panel. As a result, high reflectance and wide viewing angle characteristics were achieved.

  • PDF

An analysis method of reflectance spectra of strongly correlated electron systems

  • Hwang, Jungseek
    • Progress in Superconductivity and Cryogenics
    • /
    • v.15 no.1
    • /
    • pp.14-18
    • /
    • 2013
  • We introduce a generic method to analyze optical 17reflectance spectra of strongly correlated electron systems including high-temperature superconductors by using an extended Drude model and Allen's approach. We explain the process step by step from reflectance through the optical conductivity and the scattering rate to the bosonic spectral function. Through the process we are able to get important information on the interactions between charge carriers from measured optical conductivity of the strongly correlated electron systems including copper oxide and iron pnitide high temperature superconductors.

An Efficiency Assessment for Reflectance Normalization of RapidEye Employing BRD Components of Wide-Swath satellite

  • Kim, Sang-Il;Han, Kyung-Soo;Yeom, Jong-Min
    • Korean Journal of Remote Sensing
    • /
    • v.27 no.3
    • /
    • pp.303-314
    • /
    • 2011
  • Surface albedo is an important parameter of the surface energy budget, and its accurate quantification is of major interest to the global climate modeling community. Therefore, in this paper, we consider the direct solution of kernel based bidirectional reflectance distribution function (BRDF) models for retrieval of normalized reflectance of high resolution satellite. The BRD effects can be seen in satellite data having a wide swath such as SPOT/VGT (VEGETATION) have sufficient angular sampling, but high resolution satellites are impossible to obtain sufficient angular sampling over a pixel during short period because of their narrow swath scanning when applying semi-empirical model. This gives a difficulty to run BRDF model inferring the reflectance normalization of high resolution satellites. The principal purpose of the study is to estimate normalized reflectance of high resolution satellite (RapidEye) through BRDF components from SPOT/VGT. We use semi-empirical BRDF model to estimated BRDF components from SPOT/VGT and reflectance normalization of RapidEye. This study used SPOT/VGT satellite data acquired in the S1 (daily) data, and within this study is the multispectral sensor RapidEye. Isotropic value such as the normalized reflectance was closely related to the BRDF parameters and the kernels. Also, we show scatter plot of the SPOT/VGT and RapidEye isotropic value relationship. The linear relationship between the two linear regression analysis is performed by using the parameters of SPOTNGT like as isotropic value, geometric value and volumetric scattering value, and the kernel values of RapidEye like as geometric and volumetric scattering kernel Because BRDF parameters are difficult to directly calculate from high resolution satellites, we use to BRDF parameter of SPOT/VGT. Also, we make a decision of weighting for geometric value, volumetric scattering value and error through regression models. As a result, the weighting through linear regression analysis produced good agreement. For all sites, the SPOT/VGT isotropic and RapidEye isotropic values had the high correlation (RMSE, bias), and generally are very consistent.

An Approach to Measurement of Water Quality Factors and its Application Using NOAA satellite Data

  • Jang, Dong-Ho;Jo, Gi-Ho;Chi, Kwang-Hoon
    • Proceedings of the KSRS Conference
    • /
    • 1999.11a
    • /
    • pp.363-370
    • /
    • 1999
  • Remotely sensed data is regarded as a potentially effective data source for the measurement of water quality and for the environmental change of water bodies. In this study, we measured the spectral reflectance by using multi-spectral image of low resolution camera(LRC) which will be loaded in the OSMI multi-purpose satellite(KOMPSAT) scheduled to be launched on 1999 to use the data in analyzing water pollution. We also investigated the possibility of extraction of water quality factors in water bodies by using remotely sensed low resolution data such as NOAA/AVHRR. In this study, Shiwha-District and Sang-Sam Lake was set up as the subject areas for the study. In this part of the study, we measured the spectral reflectance of the water surface to analyze the radiance of the water bodies in low resolution spectral band and tried to analyze the water quality factors in water bodies by using radiance feature from another remotely sensed data such as NOAA/AVHRR. As the method of this study, first, we measured the spectral reflectance of the water surface by using SFOV( Single Field of View) to measure the reflectance of water quality analysis from every channel in LRC spectral band(0.4~O.9${\mu}{\textrm}{m}$). Second, we investigated the usefulness of ground truth data and the LRC data by measuring every spectral reflectance of water quality factors. Third, we analyzed water quality factors by using the radiance feature from another remotely sensed data such as NOAA/AVHRR. We carried out ratio process of what we selected Chlorophyll-a and suspended sediments as the first factors of the water quality. The results of the analysis are below. First, the amount of pollutants of Shiwha-Lake has been increasing every you since 1987 by factors of eutrophication. Second, as a result of the reflectance, Chlorophyll-a represented high spectral reflectance mainly around 0.52${\mu}{\textrm}{m}$ of green spectral band, and turbidity represented high spectral reflectance at 0.57${\mu}{\textrm}{m}$. But suspended sediments absorbed high at 0.8${\mu}{\textrm}{m}$. Third, Chlorophyll-a and suspended sediments could have a distribution chart as a result of the water quality analysis by using NOAA/AVHRR data.

  • PDF

Evaluation of Diffuse Reflectance in Multi-layered Tissue for High Intensity Laser Therapy

  • Lee, Sangkwan;Youn, Jong-In
    • Journal of the Optical Society of Korea
    • /
    • v.17 no.2
    • /
    • pp.205-212
    • /
    • 2013
  • Pain is one of the quite common symptoms in clinics and many treatment methods have been applied to relieve pain. Among the treatments, high-intensity light therapy for pain has been introduced, but this therapy has not been fully supported by confirmed efficacy due to the absence of quantitative assessments and treatment feedback data in real time. In this study, the evaluation of light distribution in tissue was performed with current high-intensity light sources quantitatively using light-tissue interaction simulations. The diffuse reflectance in tissue was generated using Monte Carlo simulation that traces photons as they undergo multiple scattering and absorption within each tissue layer (skin, fat, and muscle) and within multi-layered tissue. The results showed that the highest diffuse reflectance and the deepest penetration of tissue were achieved at ${\lambda}$=830 nm when compared with other wavelengths like ${\lambda}$=650 nm, 980 nm and 1064 nm.

Accuracy Comparison of TOA and TOC Reflectance Products of KOMPSAT-3, WorldView-2 and Pléiades-1A Image Sets Using RadCalNet BTCN and BSCN Data

  • Kim, Kwangseob;Lee, Kiwon
    • Korean Journal of Remote Sensing
    • /
    • v.38 no.1
    • /
    • pp.21-32
    • /
    • 2022
  • The importance of the classical theme of how the Top-of-Atmosphere (TOA) and Top-of-Canopy (TOC) reflectance of high-resolution satellite images match the actual atmospheric reflectance and surface reflectance has been emphasized. Based on the Radiometric Calibration Network (RadCalNet) BTCN and BSCN data, this study compared the accuracy of TOA and TOC reflectance products of the currently available optical satellites, including KOMPSAT-3, WorldView-2, and Pléiades-1A image sets calculated using the absolute atmospheric correction function of the Orfeo Toolbox (OTB) tool. The comparison experiment used data in 2018 and 2019, and the Landsat-8 image sets from the same period were applied together. The experiment results showed that the product of TOA and TOC reflectance obtained from the three sets of images were highly consistent with RadCalNet data. It implies that any imagery may be applied when high-resolution reflectance products are required for a certain application. Meanwhile, the processed results of the OTB tool and those by the Apparent Reflection method of another tool for WorldView-2 images were nearly identical. However, in some cases, the reflectance products of Landsat-8 images provided by USGS sometimes showed relatively low consistency than those computed by the OTB tool, with the reference of RadCalNet BTCN and BSCN data. Continuous experiments on active vegetation areas in addition to the RadCalNet sites are necessary to obtain generalized results.

Operational Atmospheric Correction Method over Land Surfaces for GOCI Images

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.34 no.1
    • /
    • pp.127-139
    • /
    • 2018
  • The GOCI atmospheric correction overland surfaces is essential for the time-series analysis of terrestrial environments with the very high temporal resolution. We develop an operational GOCI atmospheric correction method over land surfaces, which is rather different from the one developed for ocean surface. The GOCI atmospheric correction method basically reduces gases absorption and Rayleigh and aerosol scatterings and to derive surface reflectance from at-sensor radiance. We use the 6S radiative transfer model that requires several input parameters to calculate surface reflectance. In the sensitivity analysis, aerosol optical thickness was the most influential element among other input parameters including atmospheric model, terrain elevation, and aerosol type. To account for the highly variable nature of aerosol within the GOCI target area in northeast Asia, we generate the spatio-temporal aerosol maps using AERONET data for the aerosol correction. For a fast processing, the GOCI atmospheric correction method uses the pre-calculated look up table that directly converts at-sensor radiance to surface reflectance. The atmospheric correction method was validated by comparing with in-situ spectral measurements and MODIS reflectance products. The GOCI surface reflectance showed very similar magnitude and temporal patterns with the in-situ measurements and the MODIS reflectance. The GOCI surface reflectance was slightly higher than the in-situ measurement and MODIS reflectance by 0.01 to 0.06, which might be due to the different viewing angles. Anisotropic effect in the GOCI hourly reflectance needs to be further normalized during the following cloud-free compositing.

Surface Morphology and Reflectance of Calcite Filler in Glass Composites (Calcite 필러를 함유한 유리 복합체의 표면형상과 반사율)

  • Jeon, Jae-Seung;Hwang, Seong-Jin;Ahn, Ji-Hwan;Kim, Hyung-Sun
    • Korean Journal of Materials Research
    • /
    • v.19 no.8
    • /
    • pp.407-411
    • /
    • 2009
  • Reflection properties, such as specular reflection and diffuse reflection, are very important optical properties for the reflector, which has high reflectance in the display and architecture industry. Calcite is lowcost, nontoxic, and stable over a wide temperature range. Therefore, it is one of the most widely using fillers in many industries and has some advantages over titania as a filler to improve reflectance. However, optical properties, especially those of ceramic-filled composites, have not been analyzed. We studied the reflectance of calcite composites with their surface roughness. The reflectance of the composites was determined using a UV-visible spectrometer. The surface morphology and the micro-structure of the composites were investigated by atomic force microscope. The reflectance of the composites was improved by increasing the content of calcite in the calcite-frit composite. The reflectance is related with the surface roughness in the composites. However, the reflectance depends on the calcite contents in materials with similar surface roughness.

Atmospheric Correction Problems with Multi-Temporal High Spatial Resolution Images from Different Satellite Sensors

  • Lee, Hwa-Seon;Lee, Kyu-Sung
    • Korean Journal of Remote Sensing
    • /
    • v.31 no.4
    • /
    • pp.321-330
    • /
    • 2015
  • Atmospheric correction is an essential part in time-series analysis on biophysical parameters of surface features. In this study, we tried to examine possible problems in atmospheric correction of multitemporal High Spatial Resolution (HSR) images obtained from two different sensor systems. Three KOMPSAT-2 and two IKONOS-2 multispectral images were used. Three atmospheric correction methods were applied to derive surface reflectance: (1) Radiative Transfer (RT) - based absolute atmospheric correction method, (2) the Dark Object Subtraction (DOS) method, and (3) the Cosine Of the Uun zeniTh angle (COST) method. Atmospheric correction results were evaluated by comparing spectral reflectance values extracted from invariant targets and vegetation cover types. In overall, multi-temporal reflectance from five images obtained from January to December did not show consistent pattern in invariant targets and did not follow a typical profile of vegetation growth in forests and rice field. The multi-temporal reflectance values were different by sensor type and atmospheric correction methods. The inconsistent atmospheric correction results from these multi-temporal HSR images may be explained by several factors including unstable radiometric calibration coefficients for each sensor and wide range of sun and sensor geometry with the off-nadir viewing HSR images.

An Analysis on Building Energy Reduction Effect of Exterior Venetian Blind According to Orientation and Reflectance of Slat (블라인드형 외부차양의 종류 및 반사율에 따른 건물에너지 저감효과 분석)

  • Kim, Jin-Ah;Yoon, Seong-Hwan
    • Journal of the Korean Solar Energy Society
    • /
    • v.33 no.2
    • /
    • pp.28-34
    • /
    • 2013
  • It is essential to reduce building energy consumption in office building because government enact policy which encourages building energy certification from 2013. Office building has high cooling energy demand due to large glazed area of facade in these days. Shading devices can be an alternative of reducing high cooling energy demand. So, this study simulated a variety of exterior venetian blinds to know how much building energy be affected by orientation and reflectance of slat. The results of this study are based on Seoul weather data. The following is a summary of this study. 1) As a slat of venetian blinds has the lower reflectance, the more building energy reduced. Reflectance is usually affected by color and material of slat. In case reflectance is 0.2 reduce 4% of building energy than reflectance is 0.8. 2) Horizontal exterior venetian blinds are more effective than vertical exterior venetian blinds in all of orientation. Horizontal shape is average 16% more effective in shading effect than vertical shape. 3) In this case study, the most effective shading device is low reflectance horizontal exterior venetian blinds that result about 18% building energy reduction than no shade model. The results of this research can be used to plan shading devices for energy conservative office building.