• Title/Summary/Keyword: high production

Search Result 13,119, Processing Time 0.042 seconds

Hydrogen Production with High Temperature Solar Heat Thermochemical Cycle using CeO2/ZrO2 Foam Device (CeO2/ZrO2 Foam Device를 이용한 고온 태양열 열화학 싸이클의 수소 생산)

  • Lee, Jin-Gyu;Seo, Tae-Beom
    • Journal of the Korean Solar Energy Society
    • /
    • v.34 no.6
    • /
    • pp.11-18
    • /
    • 2014
  • Two-step water splitting thermochemical cycle with $CeO_2$ foam device was investigated by using a solar simulator composed of 2.5 kW Xe-Arc lamp and mirror reflector. The hydrogen production of $CeO_2$ foam device depending on reaction temperature of Thermal-Reduction step and Water-Decomposition step was analyzed, and the hydrogen production of $CeO_2$ and $NiFe_2O_4/ZrO_2$ foam devices was compared. As a result, the amount of reduced $CeO_2$ considerably varies according to the reaction temperature of Thermal-Reduction step. and hydrogen production was not much when the amount of reduced $CeO_2$ decreased even if the reaction temperature of Water-Decomposition step was high. Therefore, it is very important to keep the reaction temperature of Thermal-Reduction step high in two-step thermochemical cycle with $CeO_2$.

Effects of Tropical High Tannin Non Legume and Low Tannin Legume Browse Mixtures on Fermentation Parameters and Methanogenesis Using Gas Production Technique

  • Seresinhe, Thakshala;Madushika, S.A.C.;Seresinhe, Y.;La, P.K.;Orskov, E.R.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.25 no.10
    • /
    • pp.1404-1410
    • /
    • 2012
  • In vitro experiments were conducted to evaluate the suitability of several mixtures of high tanniniferous non legumes with low tanniniferous legumes on in vitro gas production (IVGP), dry matter degradation, Ammonia-N, methane production and microbial population. Eight treatments were examined in a randomized complete block design using four non-legumes and two legumes (Carallia integerrima${\times}$Leucaena leucocephala (LL) (Trt 1), C. integerrima${\times}$Gliricidia sepium (GS) (Trt 2), Aporosa lindeliyana${\times}$LL (Trt 3), A. lindeliyana${\times}$GS (Trt 4), Ceiba perntandra${\times}$LL (Trt 5), C. perntandra${\times}$GS (Trt 6), Artocarpus heterophyllus${\times}$LL (Trt 7), A. heterophyllus${\times}$GS (Trt 8). The condensed tannin (CT) content of non legumes ranged from 6.2% (Carallia integerrima) to 4.9% (Ceiba perntandra) while the CT of legumes were 1.58% (Leucaena leucocephala) and 0.78% (Gliricidia sepium). Forage mixtures contained more than 14% of crude protein (CP) while the CT content ranged from 2.8% to 4.0% respectively. Differences (p<0.05) were observed in in vitro gas production (IGVP) within treatments over a 48 h period dominated by C. perntandra${\times}$G. sepium (Trt 6). The net gas production (p<0.05) was also high with Trt6 followed by A. heterophyllus${\times}$L. leucocephala (Trt 7) and A. heterophyllus${\times}$G. sepium (Trt 8). Highest (p>0.05) NH3-N (ml/200 mg DM) production was observed with the A. heterophyllus${\times}$G. sepium (Trt 8) mixture which may be attributed with it's highest CP content. The correlation between IVGP and CT was 0.675 while IVGP and CP was 0.610. In vitro dry matter degradation (IVDMD) was highest in Trt 8 as well. Methane production ranged from 2.57 to 4.79 (ml/200 mg DM) to be synonimous with IVGP. A higher bacteria population (p<0.05) was found in C. perntandra${\times}$G. sepium (Trt 6) followed by Artocarpus heterophyllus+G. sepium (Trt 8) and the same trend was observed with the protozoa population as well. The results show that supplementing high tannin non leguminous forages by incremental substitution of legume forage increased gas production parameters, NH3-N, IVDMD and microbial population in the fermentation liquid. Methane production was not significantly affected by the presence of CT or different levels of CP in forage mixtures. Among non legumes, Ceiba perntandra and Artocarpus heterophyllus performed better in mixture with L. leucocephala and G. sepium.

High Pressure Liquid Jet Technology for Nano Particles Production

  • Mazurkiewicz, Marian;Rhee, Chang-Kyu;Weglinski, Bogumil
    • Journal of Powder Materials
    • /
    • v.15 no.5
    • /
    • pp.411-421
    • /
    • 2008
  • Principles and historical background of high pressure liquid jet (HPLJ) technology is presented in the paper. This technology can be applied, among others, for production of nano particles. This target can be achieved in various type of disintegration systems developed and designed on the base of this technology. The paper describes principles of two examples of such systems: HPLJ-reactor, called also a linear comminuting system, HPLJ- centrifugal comminuting system, which prototypes have been manufactured. A linear mill, being high energy liquid jet reactor, has been developed and tested for micronization of various types of materials. The results achieved so far, and presented in the paper, show its potential for further improvement toward nano-size particle production. Flexibility of adjustment of the reactors and the mechanism of the process allows for the creation of particles with unprecedented rheology. The reactor can be especially suitable to micronize, mix and densify materials with a wide range of mechanical properties for various industrial needs. Presented prototypes of comminution systems generate interesting potentials toward production of nano particles. Their performance, based on up today research, confirms expected high efficiency of materials disintegration, which opens a new challenge for industrial applications. The paper points out benefits and area of possible applications of presented technology.

pH와 용존산소량이 Aureobasidium pullulans에 의한 pullulan의 생산성과 분자량에 미치는 영향에 대한 연구

  • Lee, Ji-Hyeon;Kim, Jeong-Hwa;Kim, Mi-Ryeong;Lee, Jin-U;Kim, Seong-Gu
    • 한국생물공학회:학술대회논문집
    • /
    • 2000.04a
    • /
    • pp.283-286
    • /
    • 2000
  • The effects of dissolved oxygen and pH on the cell growth and mass production of high-molecular weight pullulan by A. pullulans ATCC 42023 were evaluated. For the production of commercially useful pullulan with high-molecular weight, the influence of pH control on the pullulan production and growth of A. pullulans was studied in batch fermentation. It was found that the productivity of high-molecular weight pullulan with pH control at 6.5 was higher than that with no pH control. The influence of dissolved oxygen on the pullulan production and growth was studied. It was found that pullulan yield and synthesis rate increased with oxygen availability.

  • PDF

Effect of Flashing Light on Oxygen Production Rates in High-Density Algal Cultures

  • Park, Kyong-Hee;Kim, Dong-Il;Lee, Choul-Gyun
    • Journal of Microbiology and Biotechnology
    • /
    • v.10 no.6
    • /
    • pp.817-822
    • /
    • 2000
  • A proper flashing light is expected to enhance microalgal biomass productivity and photosynthetic efficiency. The effect of flashing light on high-density Chlorella kessleri (UTEX 398) cultures was studied using light-emitting diodes. A frequency modulator was designed to flash LEDs, and the device successfully provided wide range of frequencies and various duty cycles of flashing. A relatively high frequencies of 10, 20 and 50 kHz were used in this study. These frequencies have very short flashing time ($2-50{\mu}s$), which corresponded to the time constant of the light reaction of photosynthesis. The specific oxygen production rates of photosynthesis under flashing light were compared with those under an equivalent continuous light in specially designed illumination cuvette. The specific oxygen production rates under flashing light were 5-25% higher than those under the continuous light. A range of cell concentration was discovered, where the benefit of flashing light was maximized. The photosynthetic efficiency was also higher under flashing light with frequencies of over 1 kHz, which was a clear indication of flashing light effect and the degree of mutual shading could by overcome by flashing lights, particularly at high-density algal cultures.

  • PDF

Effects of High Amylose Starch on Gut Functions in Rats (고아밀로오스전분의 섭취가 흰쥐의 장기능에 미치는 영향)

  • 설소미;방명희;정미경;김우경
    • Journal of Nutrition and Health
    • /
    • v.36 no.2
    • /
    • pp.109-116
    • /
    • 2003
  • This study investigated the effects of high amylose starch (HAS) consumption on gut functions in male Sprague-Dawley rats. Experimental animals were fed an diet containing HAS for 4 weeks (0, 125, 250, 500 g/kg diet). Stool weights, transit time, the pH of cecum, Bifidobacterium growth, short chain fatty acid production, and prostaglandin E$_2$production in colon mucus were measured. HAS intake did not affect body weight gain or food efficiency ratio during experimental period. There were no significant differences in kidney weight, epididymal fat pad weights or spleen weights, but the weights of the liver and thymus were significantly lower in the HAS100 group. The length of the large intestine, the weights of the cecum wall and cecum contents, and stool weights significantly increased through HAS intake. But transit time was not affected by the experimental diet. Although Bifidobacterium growth in the cecum increased through the HAS intake dose dependently, there were significant differences in the HAS50 and HAS100 groups. HAS intake increased the production of short chain fatty acid in the cecum contents. In particular, acetate and butyrate concentrations grew significantly. And the production of prostaglandin E$_2$in the colon mucus significantly decreased through HAS intake. These results demonstrate that high amylose starch intake significantly improves gut function.

SAFETY STUDIES ON HYDROGEN PRODUCTION SYSTEM WITH A HIGH TEMPERATURE GAS-COOLED REACTOR

  • TAKEDA TETSUAKI
    • Nuclear Engineering and Technology
    • /
    • v.37 no.6
    • /
    • pp.537-556
    • /
    • 2005
  • A primary-pipe rupture accident is one of the design-basis accidents of a High-Temperature Gas-cooled Reactor (HTGR). When the primary-pipe rupture accident occurs, air is expected to enter the reactor core from the breach and oxidize in-core graphite structures. This paper describes an experiment and analysis of the air ingress phenomena and the method fur the prevention of air ingress into the reactor during the primary-pipe rupture accident. The numerical results are in good agreement with the experimental ones regarding the density of the gas mixture, the concentration of each gas species produced by the graphite oxidation reaction and the onset time of the natural circulation of air. A hydrogen production system connected to the High-Temperature Engineering Test Reactor (HTTR) Is being designed to be able to produce hydrogen by themo-chemical iodine-Sulfur process, using a nuclear heat of 10 MW supplied by the HTTR. The HTTR hydrogen production system is first connected to a nuclear reactor in the world; hence a permeation test of hydrogen isotopes through heat exchanger is carried out to obtain detailed data for safety review and development of analytical codes. This paper also describes an overview of the hydrogen permeation test and permeability of hydrogen and deuterium of Hastelloy XR.

Conceptual design of a high neutron flux research reactor core with low enriched uranium fuel and low plutonium production

  • Rahimi, Ghasem;Nematollahi, MohammadReza;Hadad, Kamal;Rabiee, Ataollah
    • Nuclear Engineering and Technology
    • /
    • v.52 no.3
    • /
    • pp.499-507
    • /
    • 2020
  • Research reactors for radioisotope production, fuel and material testing and research activities are designed, constructed and operated based on the society's needs. In this study, neutronic and thermal hydraulic design of a high neutron flux research reactor core for radioisotope production is presented. Main parameters including core excess reactivity, reactivity variations, power and flux distribution during the cycle, axial and radial power peaking factors (PPF), Pu239 production and minimum DNBR are calculated by nuclear deterministic codes. Core calculations performed by deterministic codes are validated with Monte Carlo code. Comparison of the neutronic parameters obtained from deterministic and Monte Carlo codes indicates good agreement. Finally, subchannel analysis performed for the hot channel to evaluate the maximum fuel and clad temperatures. The results show that the average thermal neutron flux at the beginning of cycle (BOC) is 1.0811 × 1014 n/㎠-s and at the end of cycle (EOC) is 1.229 × 1014 n/㎠-s. Total Plutonium (Pu239) production at the EOC evaluated to be 0.9487 Kg with 83.64% grade when LEU (UO2 with 3.7% enrichment) used as fuel. This designed reactor which uses LEU fuel and has high neutron flux and low plutonium production could be used for peaceful nuclear activities based on nuclear non-proliferation treaty concepts.

Effects of Daily Herbage Allowance on Sward Structure, Herbage Intake and Milk Production by Dairy Cows Grazing a Pure Perennial Ryegrass Sward

  • Kim, T.H.;An, K.W.;Jung, W.J.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.14 no.10
    • /
    • pp.1383-1388
    • /
    • 2001
  • To explore the factors restricting animal performance in relation to sward structure under a strip-grazing system, measurements of sward factors, herbage intake and milk production at 3 levels of herbage allowance were made on perennial ryegrass (Latium perenne L.) sward for 3 experimental periods. About 29%, 36% and 52% of the biomass offered was removed by grazing in high $(42kg\;OM{\cdot}day^{-1}{\cdot}head^{-1})$, medium $(30kg\;OM{\cdot}day^{-1}{\cdot}head^{-1})$ and low $(18kg\;OM{\cdot}day^{-1}{\cdot}head^{-1})$ herbage allowance plots. Live leaf material was much more affected by grazing under different herbage allowance levels than dead material or leaf sheath. Grazing with a low herbage allowance decreased the proportion of live lamina by 93% and live lamina density by 96% before grazing. The density of dead material plus sheath was decreased by 17% after grazing at a low allowance, while it slightly increased or remained constant in the plots applied with high and medium allowances, respectively. The highly significant (p<0.01) correlations between herbage allowance and proportion (r=0.94) and density (r=0.91) of live lamina in residual sward after grazing were observed. Daily herbage intakes in the plots with high and medium levels of herbage allowance were not significantly different at $15.3kg\;OM{\cdot}head^{-1}$ in average, whereas with low level it decreased to $13.9kg\;OM{\cdot}head^{-1}$. Daily milk production was significantly (p<0.05) declined from $22.3kg{\cdot}head^{-1}$ (at high herbage allowance) to $19.7kg{\cdot}head^{-1}$ (at low herbage allowance). The data obtained clearly indicated that herbage intake and milk production were highly affected by the characteristics of residual sward, which were closely related to the level of herbage allowance.

Effects of inorganic salts on biomass production, cell wall components, and bioethanol production in Nicotiana tabacum

  • Sim, Seon Jeong;Yong, Seong Hyeon;Kim, Hak Gon;Choi, Myung Suk;Choi, Pil Son
    • Journal of Plant Biotechnology
    • /
    • v.48 no.4
    • /
    • pp.278-288
    • /
    • 2021
  • The development of bioenergy through biomass has gained importance due to the increasing rates of fossil fuel depletion. Biomass is important to increase the productivity of bioethanol, and production of biomass with high biomass productivity, low lignin content, and high cellulose content is also important in this regard. Inorganic salts are important in the cultivation of biomass crops for the production of biomass with desirable characteristics. In this study, the roles of various inorganic salts in biomass and bioethanol production were investigated using an in vitro tobacco culture system. The inorganic salts evaluated in this study showed dramatic effects on tobacco plant growth. For example, H2PO4 substantially improved plant growth and the root/shoot (R/S) ratio. The chemical compositions of tobacco plants grown in media after removal of various inorganic salts also showed significant differences; for example, lignin content was high after Mg2+ removal treatment and low after K+ treatment and H2PO4 removal treatment. On the other hand, NO3- and H2PO4 treatments yielded the highest cellulose content, while enzymatic hydrolysis yielded the highest glucose concentration ratio 24 h after NH4+ removal treatment. The ethanol productivity after H2PO4 removal treatment was 3.95% (w/v) 24 h after fermentation and 3.75% (w/v) after 36 h. These results can be used as the basis for producing high-quality biomass for future bioethanol production.