• Title/Summary/Keyword: high production

Search Result 13,119, Processing Time 0.041 seconds

Evaluation of the Degradation of Carbohydrate-based Material During Anaerobic Digestion for High-efficiency Biogas Production

  • Kim, Min-Jee;Kim, Sang-Hun
    • Journal of Biosystems Engineering
    • /
    • v.43 no.2
    • /
    • pp.110-118
    • /
    • 2018
  • Purpose: In this study, the potential for biogas production, degradation rates, and lag-phase of diauxic growth of carbohydrate-based material, which is one of the proximate compositions, were investigated. Methods: This study was conducted using starch as a carbohydrate-based material. In experimental condition 1, the biogas potential of carbohydrate-based material was measured. In experimental condition 2, the effect of feed to microorganism ratio (F/M ratio) on lag-phase of diauxic growth from carbohydrate-based material was tested. Biochemical methane potential tests were performed at five different feed to microorganism ratios (0.2, 0.4, 0.6, 0.8, and 1.0) under mesophilic conditions. The biogas production patterns, lag-phase, total volatile fatty acids to total alkalinity ratio (TVFA/TA ratio), and time required for 90 percent biogas production were used to evaluate biogas production based on the biochemical methane potential tests. Results: In experimental condition 1, unlike previous studies, biogas was produced in the TVFA/TA ratio ranging from 1.131 to 2.029 (approximately 13-19 days). The methane content in the biogas produced from the digesters was 7% on day 9 and increased rapidly until approximately day 27 (approximately 72%). In experimental condition 2, biogas yield was improved when the feed to microorganism ratio exceeded 0.6, with an initial lag-phase. Conclusions: Even if the TVFA/TA ratio was greater than 1.0, the biogas production was processed continuously, and the $CO_2$ content of the biogas production was as high as 60%. The biogas yield was improved when the F/M ratio was increased more than 0.6, but the lag-phase of carbohydrate-based material digestion became longer starting with high organic loading rate. To clarify the problem of the initial lag-phase, our future study will examine the microbial mechanisms during anaerobic digestion.

Utilization of Soil Resources for Maximum Production of Food Grains (식량 최대생산을 위한 토양자원 이용)

  • Sin Je Seong;Kim Lee Yeol
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 1999.11a
    • /
    • pp.145-167
    • /
    • 1999
  • Our self-sufficiency of food has become less than $30{\%}$ and our nation is highly dependant on world's grain market for food. which is unstable in long term due to the world population growth faster than food production. Therefore, it is a great possibility that food might become a political weapon by way of its global shortage. its purchasing difficulty in international free trade market. and the resultant price rising. Our maximal capability of food production has become the most outstanding problem in the dimension of future food security. It would be the utmost scheme for maximal production of food to realize the maximal utilization of arable land through the enlargement of sufficient farming land and the conversion of rotation system for the more grain production. Extensional enlargement of arable land can be positively executed through the development of farming land in domestic and abroad countries. The readjustment of arable land and the installation or irrigation and drainage system can enforce the farming basement for maximal utilization of arable land through the improved rotation between paddy and upland. The prevention policy against farming land encroachment should be strictly executed through grain production encouragement on resting or marginal lands and regulation of utilization conversion for the other than food production on high grade farming lands. It is also required urgently to develope high yielding and high quality varieties through advanced genetic technology for the improvement of unit area yield, especially of wheat, corn. and soybean we import in large quantity The maximal utilization of arable land for the highest production of food can be realized through rational rotation system, the most adaptable crop cultivation on the suitable land, and the most optimal fertilization through the GIS analysis of agricultural environment information on the basis of the computerized soil resource data on super detailed soil maps(1:5000) surveyed plot by plot of whole nation.

  • PDF

Application of Membrane Technology in Thermochemical Hydrogen Production IS (iodine-sulfur) Process Using the Nuclear Heat (원자력 고온 핵 열을 이용한 열화학적 수소제조 IS(요오드-황) 프로세스에서의 분리막 기술의 이용)

  • Hwang Gab-Jin;Park Chu-Sik;Lee Sang-Ho;Kim Tae-Hwan;Choi Ho-Sang
    • Membrane Journal
    • /
    • v.14 no.3
    • /
    • pp.185-191
    • /
    • 2004
  • It summarized about the properties of thermochemical water-splitting iodine-sulfur process that was hydrogen production using the waste heat from the High Temperature Gas-Cooled Reactor (HTGR) recycling the heat of nuclear power. It was mainly explained about the application of membrane separation technique in IS process. Thermochemical water-splitting hydrogen production method using the high temperature nuclear thermal energy could be realized and remained to be solved the investigation subject. And, it is possible for mass-production of hydrogen such as one of the clean energy in future.

Intelligent Lighting Control using Wireless Sensor Networks for Media Production

  • Park, Hee-Min;Burke, Jeff;Srivastava, Mani B.
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.3 no.5
    • /
    • pp.423-443
    • /
    • 2009
  • We present the design and implementation of a unique sensing and actuation application -- the Illuminator: a sensor network-based intelligent light control system for entertainment and media production. Unlike most sensor network applications, which focus on sensing alone, a distinctive aspect of the Illuminator is that it closes the loop from light sensing to lighting control. We describe the Illuminator's design requirements, system architecture, algorithms, implementation and experimental results. The system uses the Illumimote, a multi-modal and high fidelity light sensor module well-suited for wireless sensor networks, to satisfy the high-performance light sensing requirements of entertainment and media production applications. The Illuminator system is a toolset to characterize the illumination profile of a deployed set of fixed position lights, generate desired lighting effects for moving targets (actors, scenic elements, etc.) based on user constraints expressed in a formal language, and to assist in the set up of lights to achieve the same illumination profile in multiple venues. After characterizing deployed lights, the Illuminator computes optimal light settings at run-time to achieve a user-specified actuation profile, using an optimization framework based on a genetic algorithm. Uniquely, it can use deployed sensors to incorporate changing ambient lighting conditions and moving targets into actuation. Experimental results demonstrate that the Illuminator handles various high-level user requirements and generates an optimal light actuation profile. These results suggest that the Illuminator system supports entertainment and media production applications.

Candida tropicalis DS-72에 의한 Xylose로부터 Xylitol의 생산

  • 오덕근;김상용
    • Microbiology and Biotechnology Letters
    • /
    • v.25 no.3
    • /
    • pp.311-316
    • /
    • 1997
  • A high xylitol producing yeast was isolated from the sludge of xylose manufacturing factory and then identified as Candida tropicalis DS-72 according to physiological properties. The strain was able to produce xylitol in a high concentration up to 72g/l from 100g/l xylose in 32 hours. Medium optimization for xylitol production by C. tropicalis DS-72 was performed. Effect of various nitrogen sources on xylitol production was investigated. Of nitrogenous compounds, yeast extract was the most suitable organic nitrogen nutrient for the enhancement of xylitol production. However, inorganic nitrogen resulted in a low cell concentration and did not produce xylitol. Effect of inorganic salts such as KH$_{2}$PO$_{4}$, and MgSO$_{4}$, 7H$_{2}$O on xylitol production was also studied. Optimal medium was selected as xylose 100g/l, yeast extract 10g/l, KH$_{2}$PO$_{4}$, 5 g/l and MgSO$_{4}$, 7H$_{2}$O 0.2 g/l. Xylitol of 88 g/l was produced from 100 g/l xylose in 30 hours using the optimal medium in a flask. In a fermentor, a fed-batch culture with 300g/l xylose was carried out. A final xylitol concentration of 240 g/l in the culture could be obtained in 43 hours of culture time by maintaining the high level of dissolved oxygen during growth phase and limiting the dissolved oxygen in the same culture during production phase. This result corresponded to a xylitol yield of 80% and a xylitol productivity of 5.58 g/1-h.

  • PDF

Quantitative Comparison of Diversity and Conformity in Nitrogen Recycling of Ruminants

  • Obitsu, T.;Taniguchi, K.
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.22 no.3
    • /
    • pp.440-447
    • /
    • 2009
  • Domestic ruminant animals are reared in diverse production systems, ranging from extensive systems under semi-arid and tropical conditions with poor feed resources to intensive systems in temperate and cold areas with high quality feed. Nitrogen (N) recycling between the body and gut of ruminants plays a key role in the adaptation to such diverse nutritional conditions. Ammonia and microbial protein produced in the gut and urea synthesized in the liver are major players in N-recycling transactions. In this review, we focus on the physiological factors affecting urea production and recycling. Sheep and buffalo probably have higher abilities to reabsorb urea from the kidney compared with cattle. This affects the degree of urea-N recycling between the body and gut at both low and high N intakes. The synthesis and gut entry of urea also differs between cattle bred for either dairy or beef production. Lactating dairy cows show a higher gut entry of urea compared with growing cattle. The synthesis and recycling of urea dramatically increases after weaning, so that the functional development of the rumen exerts an essential role in N transactions. Furthermore, high ambient temperature increases urea production but reduces urea gut entry. An increase in total urea flux, caused by the return to the ornithine cycle from the gut entry, is considered to serve as a labile N pool in the whole body to permit metabolic plasticity under a variety of physiological, environmental and nutritional conditions.

Enhanced Biofuel Production from High-Concentration Bioethanol Wastewater by a Newly Isolated Heterotrophic Microalga, Chlorella vulgaris LAM-Q

  • Xie, Tonghui;Liu, Jing;Du, Kaifeng;Liang, Bin;Zhang, Yongkui
    • Journal of Microbiology and Biotechnology
    • /
    • v.23 no.10
    • /
    • pp.1460-1471
    • /
    • 2013
  • Microalgal biofuel production from wastewater has economic and environmental advantages. This article investigates the lipid production from high chemical oxygen demand (COD) bioethanol wastewater without dilution or additional nutrients, using a newly isolated heterotrophic microalga, Chlorella vulgaris LAM-Q. To enhance lipid accumulation, the combined effects of important operational parameters were studied via response surface methodology. The optimal conditions were found to be temperature of $22.8^{\circ}C$, initial pH of 6.7, and inoculum density of $1.2{\times}10^8cells/ml$. Under these conditions, the lipid productivity reached 195.96 mg/l/d, which was markedly higher than previously reported values in similar systems. According to the fatty acid composition, the obtained lipids were suitable feedstock for biodiesel production. Meanwhile, 61.40% of COD, 51.24% of total nitrogen, and 58.76% of total phosphorus were removed from the bioethanol wastewater during microalgal growth. In addition, 19.17% of the energy contained in the wastewater was transferred to the microalgal biomass in the fermentation process. These findings suggest that C. vulgaris LAM-Q can efficiently produce lipids from high-concentration bioethanol wastewater, and simultaneously performs wastewater treatment.

A Study on the Effect of Pre-treatment on the Formation of Nitriding Layer by Post Plasma (포스트 플라즈마를 이용한 질화의 질화층 형성에 미치는 전처리의 영향에 대한 연구)

  • Moon, Kyoung Il;Byun, Sang Mo;Cho, Yong Ki;Kim, Sang Gweon;Kim, Sung Wan
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.18 no.1
    • /
    • pp.24-28
    • /
    • 2005
  • New post plasma nitriding can achieve a high uniformity that have been difficult in DC nitriding and have a high productivity comparable to gas nitriding. However, it has not a enough high nitriding potential for a rapid nitriding, because surface activation or ion etching in the general plasma nitriding cannot be expected. Thus, in this study, the effects of pre-treatments with oxidation and reduction gas have been investigated to improve the nitriding kinetics of post plasma nitriding. An effective pre-treatment consisting of oxidation and reduction resulted in the increase of surface energy of STD 11. This induced the surface hardness and the effective nitriding depth of STD 11. It is thought that the increase of the surface energy and the surface area with pre-treatment promote the nucleation of nitriding layer.

Black Locust (Robinia pseudoacacia L.) in Bulgaria

  • Iliev, Nasko;Iliev, Ivan;Park, Young-Goo
    • Journal of Korean Society of Forest Science
    • /
    • v.94 no.5 s.162
    • /
    • pp.291-301
    • /
    • 2005
  • Robinia pseudoacacia is one of most widely cultivated exotic species in Bulgaria. The total area of black locust plantations amounts to 2.9% of the total forest area of the country. 15.34% of the plantations are of management afforestations category, where the priority is given to timber production. They have been created on rich and moisture soils, which are the most appropriate for the species in order to achieve its biological potentials of high productivity. The rest of the available plantations in the country are planted on poorer and drier soils up to 600~800 m altitude. The high adaptive ability of the species to unsuitable environmental conditions as well as the high sprout potential was used for their creation. These stands are mainly done with the aim to protect and ameliorate damaged environments and production of small-size timber and fire woods. They are cultivated until 15-20 years and are revived by sprouts. Therefore the management goals searched, 45.69% of those forests are low productive and 38.97% with average productiveness. The present report deals with growth and productivity capacity of black locust plantations; production of sowing materials; production of reproductive and vegetative saplings for afforestation; the technological aspects of afforestation works; the management and use of black locust plantations as well as some more important diseases and pests affecting the species. The report is entirely based on Bulgarian scientific research works and experience with the Robinia preudoacacia. Recommendations for optimizing the use of species are given.

Input-Output Analysis on the Medical Service Industry between Korea and Japan (의료서비스산업의 산업연관분석)

  • 이견직;정영호
    • Health Policy and Management
    • /
    • v.10 no.1
    • /
    • pp.126-147
    • /
    • 2000
  • This paper empirically explores the nature of the medical service industry and its various propagation effects on the economy in the input-output model, as revealed by a comparative analysis between Korea and Japan. The main findings of the paper are as follows; First, the growth of medical industry induces above-average effect on employment. Second, the industry is of the characteristics of weak both backward and forward linkage effects implying a 'final demand dependency industry'. When compared with public service sectors, however, the medical services industry shows stronger backward linkage effect than those sectors. Furthermore, it has strong repercussion effects on the goods industries. Third, in order to produce per unit of services, the medical services industry of Korea uses relatively more drugs and medical devices than that of Japan. In general, it has been shown that production structure of medical service industry in Korea is 'hardware-oriented' one; on the other hand, 'software-oriented' in Japan which means that, as intermediate inputs, outsourcing and informatization has been used than those of Korea. From the findings of the paper it could be emphasized that the medical organizations in Korea should put more efforts on shifting the current hardware-oriented production structure to strengthen core competence by enhancing productivity and by outsourcing to improve efficiency of production process. However, the medical organizations in Korea would not have enough incentives for high value-added production structure because they enjoy high operating surplus. Therefore, it would be necessary that government policy should be taken into account of these environments.

  • PDF