• Title/Summary/Keyword: high pressure pump

Search Result 522, Processing Time 0.031 seconds

PWR Hot Leg Natural Circulation Modeling with MELCOR Code

  • Park, Jae-Hong;Lee, Jong-In;Randall. K. Cole;Randall. O. Gauntt
    • Proceedings of the Korean Nuclear Society Conference
    • /
    • 1997.10a
    • /
    • pp.772-777
    • /
    • 1997
  • Previous MELCOR and SCDAP/RELAP5 nodalizations for simulating the counter-current, natural circulation behavior of vapor flow within the RCS hot legs and SG U-tubes when core damage progress can not be applied to the steady state and water-filled conditions during the initial period of accident progression because of the artificially high loss coefficients in the hot legs and SG U-tubes which were chosen from results of COMMIX calculation and the Westinghouse natural circulation experiments in a 1/7-scale facility for simulating steam natural circulation behavior in the vessel and in the hot leg and SG during the TMLB' scenrio. The objective of this study is to develop a natural circulation modeling which can be used both for the liquid flow condition at steady state and for the vapor flow condition at the later period of in-vessel core damage. For this, the drag forces resulting from the momentum exchange effects between the two vapor streams in the hot leg was modeled as a pressure drop by pump model. This hot leg natural circulation modeling of MELCOR was able to reproduce similar mass flow rates with those predicted by previous models.

  • PDF

Characteristics of joint resistance with different kinds of HTS tapes for heater trigger switch

  • Lee, Jeyull;Park, Young Gun;Lee, Woo Seung;Jo, Hyun Chul;Yoon, Yong Soo;Ko, Tae Kuk
    • Progress in Superconductivity and Cryogenics
    • /
    • v.16 no.1
    • /
    • pp.32-35
    • /
    • 2014
  • Recently, many researches on the system of superconducting power supply and superconducting magnetic energy storage (SMES) using high temperature superconducting (HTS) tapes has been progressed. Those kinds of superconducting devices use the heater trigger switches that have a control delay problem at moments of heating up and cooling down. One way to reduce the time delay is using a different HTS tape at trigger part. For example, HTS tape having lower critical temperature can reduce time delay of heating up and heating down stage for heater trigger operation. This paper deals with resistances joint with different kinds of HTS tapes which have different properties to verify usefulness of the suggested method. Three kinds of commercial HTS tapes with different specifications are selected as samples and two kinds of solders are used for comparison. Joint is performed with temperature and pressure controllable joint machine and the joint characteristics are analyzed under the repeatable conditions.

An Investigation into the Three-dimensional Design of Turbine Rotor Blade for Turbopump (터보펌프용 터빈 로터 블레이드의 3차원 설계 연구)

  • Jeong, Sooin;Choi, Byoungik;Lee, Hanggi;Kim, Kuisoon
    • Proceedings of the Korean Society of Propulsion Engineers Conference
    • /
    • 2017.05a
    • /
    • pp.1038-1044
    • /
    • 2017
  • We are working on improving the performance by applying the three-dimensional design element to the rotor blades of high pressure supersonic impulse turbine that drives turbo pump of liquid rocket engine. In this paper, based on the shape of a rotor blade of a turbopump turbine designed in the past, a three-dimensional shape is applied to a rotor blade through a stacking line change such as sweep and dihedral. After performing the flow analysis, the changes in the turbine performance characteristics for each design element were carefully examined and the results were summarized.

  • PDF

Bilateral optic neuropathy related to severe anemia in a patient with alcoholic cirrhosis: A case report and review of the literature

  • Humbertjean-Selton, Lisa;Selton, Jerome;Riou-Comte, Nolwenn;Lacour, Jean-Christophe;Mione, Gioia;Richard, Sebastien
    • Clinical and Molecular Hepatology
    • /
    • v.24 no.4
    • /
    • pp.417-423
    • /
    • 2018
  • Anemia appears frequently in patients with alcoholic liver disease (ALD) but has never been linked to bilateral nonarteritic anterior ischemic optic neuropathy (NAION). A 65-year-old woman with a medical history of alcoholic cirrhosis was admitted for bilateral NAION. On admission, she was found to have a low arterial pressure and severe normocytic anemia (48 g/L). The anemia was related to chronic bleeding due to antral gastritis along with other factors associated with ALD. The applied treatment consisted of urgent transfusion followed by high doses of proton-pump inhibitors, iron and vitamin supplementation, and support in lifestyle measures. Her hemoglobin levels remained stable after 2 years but the patient still suffered from visual loss. This case highlights the link between anemia and bilateral NAION in ALD patients. The optic nerve head is prone to infarction in this context due to the vascularization characteristics of ALD. Hemoglobin levels should be monitored in ALD patients to avoid the severe complication of NAION.

Development of Inorganic Sludge Drying System Technology Applied with Ejector by Air Velocity (이젝터를 적용한 무기성 슬러지 건조시스템 기술개발)

  • Cho, En-man;Jeong, Won-hoon;Kim, Dong-keon;Kim, Bong-hwan
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.9
    • /
    • pp.35-41
    • /
    • 2022
  • The moisture content of many inorganic sludges is less than 70% during dewatering. Hence, a mono or piston pump cannot feed the sludge dryer. Thus, most inorganic sludge should be moved to a landfill or recycled directly without any reduction method. This development was invented to apply cyclone dryers using air and specially designed for the continuous injection of sludge sources by negative pressure and high air velocity for low moisture inorganic matter. Therefore, wastewater sludge and raw water treatment sludge discharged from various industrial fields might be settled by this development. The cyclone dryer was commercialized useful as moisture reduction equipment. This development was applied using a sludge injection system for sludge feeding and under the cooperation of ejector design computational fluid dynamics. Furthermore, this paper presented good ejector model results, blowing an airflow of 264 m3/min at an actual performance test.

Development and validation of the lead-bismuth cooled reactor system code based on a fully implicit homogeneous flow model

  • Ge Li;Wang Jingxin;Fan Kun;Zhang Jie;Shan Jianqiang
    • Nuclear Engineering and Technology
    • /
    • v.56 no.4
    • /
    • pp.1213-1224
    • /
    • 2024
  • The liquid lead-bismuth cooled fast reactor has been in a single-phase, low-pressure, and high-temperature state for a long time during operation. Considering the requirement of calculation efficiency for long-term transient accident calculation, based on a homogeneous hydrodynamic model, one-dimensional heat conduction model, coolant flow and heat transfer model, neutron kinetics model, coolant and material properties model, this study used the fully implicit difference scheme algorithm of the convection-diffusion term to solve the basic conservation equation, to develop the transient analysis program NUSOL-LMR 2.0 for the lead-bismuth fast reactor system. The steady-state and typical design basis accidents (including reactivity introduction, loss of flow caused by main pump idling, excessive cooling, and plant power outage accidents) for the ABR have been analyzed. The results are compared with the international system analysis software ATHENA. The results indicate that the developed program can stably, accurately, and efficiently predict the transient accident response and safety characteristics of the lead-bismuth fast reactor system.

Mixed Flow and Oxygen Transfer Characteristics of Vertical Orifice Ejector (수직 오리피스 이젝터의 혼합유동 및 산소전달 특성)

  • Kim, Dong Jun;Park, Sang Kyoo;Yang, Hei Cheon
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.39 no.1
    • /
    • pp.61-69
    • /
    • 2015
  • The objective of this study is to experimentally investigate the mixed flow behaviors and oxygen transfer characteristics of a vertical orifice ejector. The experimental apparatus consisted of an electric motor-pump, an orifice ejector, a circulation water tank, an air compressor, a high speed camera unit and control or measurement accessories. The mass ratio was calculated using the measured primary flow rate and suction air flow rate with experimental parameters. The visualization images of vertically injected mixed jet issuing from the orifice ejector were qualitatively analyzed. The volumetric oxygen transfer coefficient was calculated using the measured dissolved oxygen concentration. At a constant primary flow rate, the mass ratio and oxygen transfer coefficient increase with the air pressure of compressor. At a constant air pressure of the compressor, the mass ratio decreases and the oxygen transfer coefficient increases as the primary flow rate increases. The residence time and dispersion of fine air bubbles and the penetration of mixed flow were found to be important parameters for the oxygen transfer rate owing to the contact area and time of two phases.

Vibration Identification of Gasoline Direct Injection Engine Based on Partial Coherence Function (부분기여도 함수를 이용한 직접분사 가솔린 엔진 부품의 진동원 분석)

  • Chang, Ji-Uk;Lee, Sang-Kwon;Park, Jong-Ho;Kim, Byung-Hyun
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.36 no.11
    • /
    • pp.1371-1379
    • /
    • 2012
  • This paper presents a method for estimating the contribution of vibration sources in gasoline direct injection engine parts with a multiple-input system. A partial coherence function was used to identify the cause of the linear dependence indicated by an ordinary coherence function. To apply the partial coherence function to vibration source identification in the powertrain system of a gasoline direct injection engine, a virtual model of a two-input and single-output system is simulated. For the validation of this model, the vibration of the powertrain parts was measured by using triaxial accelerometers attached to the selected vibration sources-a high-pressure pump, fuel rail, injector, and pressure sensor. After calculating the partial coherence between each source based on the virtual model, the vibration contribution of the powertrain system is calculated. This virtual model based on the partial coherence function is implemented to determine the quantitative vibration contribution of each powertrain part.

Combustion Experiments of a High Pressure Liquid Propellant Thrust Chamber (액체로켓 엔진용 고압 연소기의 연소시험)

  • Seo, Seong-Hyeon;Han, Yeoung-Min;Moon, Il-Yoon;Lee, Kwang-Jin;Kim, Jong-Kyu;Lim, Byung-Jik;Ahn, Kyu-Bok;Choi, Hwan-Seok
    • Journal of the Korean Society of Propulsion Engineers
    • /
    • v.10 no.4
    • /
    • pp.40-46
    • /
    • 2006
  • A 30-tonf-class fullscale thrust chamber for the application to a Low-Earth-Orbit Space Launch Vehicle has been combustion tested over the wide ranges of a mixture ratio and a chamber pressure. The thrust chamber designed for a pump-fed open cycle engine was tested with an ablative chamber instead of a regenerative one for the initial evaluation of its performance and function. The test results revealed stable combustion characteristics. The hardware survived the harsh environment and showed very sound functional characteristics. The measured combustion efficiency turned out to be 95% and a specific impulse at sea level was estimated as 254sec, which are comparable to or above the predetermined design values.

Optimization of membrane fouling process for mustard tuber wastewater treatment in an anoxic-oxic biofilm-membrane bioreactor

  • Chai, Hongxiang;Li, Liang;Wei, Yinghua;Zhou, Jian;Kang, Wei;Shao, Zhiyu;He, Qiang
    • Environmental Engineering Research
    • /
    • v.21 no.2
    • /
    • pp.196-202
    • /
    • 2016
  • Membrane bioreactor (MBR) technology has previously been used by water industry to treat high salinity wastewater. In this study, an anoxic-oxic biofilm-membrane bioreactor (AOB-MBR) system has been developed to treat mustard tuber wastewater of 10% salinity (calculated as NaCl). To figure out the effects of operating conditions of the AOB-MBR on membrane fouling rate ($K_V$), response surface methodology was used to evaluate the interaction effect of the three key operational parameters, namely time interval for pump (t), aeration intensity ($U_{Gr}$) and transmembrane pressure (TMP). The optimal condition for lowest membrane fouling rate ($K_V$) was obtained: time interval was 4.0 min, aeration intensity was $14.6 m^3/(m^2{\cdot}h)$ and transmembrane pressure was 19.0 kPa. And under this condition, the treatment efficiency with different influent loads, i.e. 1.0, 1.9 and $3.3kgCODm^{-3}d^{-1}$ was researched. When the reactor influent load was less than $1.9kgCODm^{-3}d^{-1}$, the effluent could meet the third discharge standard of "Integrated Wastewater Discharge Standard". This study suggests that the model fitted by response surface methodology can predict accurately membrane fouling rate within the specified design space. And it is feasible to apply the AOB-MBR in the pickled mustard tuber factory, achieving satisfying effluent quality.