• Title/Summary/Keyword: high pressure compressor

Search Result 263, Processing Time 0.025 seconds

An Experimental Study on the High Performance Optimal Discharge System of a Rotary Compressor for an Air Conditioner using alternative Refrigerant R410a (대체냉매 공기조화기용 로터리 압축기의 성능향상을 위한 최적 토출계에 관한 실험적 연구)

  • Youn, Young;Chung, Jin-Taek;Min, Man-Ki
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.13 no.2
    • /
    • pp.96-105
    • /
    • 2001
  • R410a which is one of HFC refrigerants is being considered to be a promising replacement for R22 widely used in domestic air conditioners. The rolling piston type rotary compressors for R410a have lower energy efficiency than those for R22 because of the high pressure difference between a suction chamber and a discharge chamber in the compression mechanism. in addition, the re-expansion gas loss of the rotary compressor for R410a which occurs a ta clearance volume in a discharge port becomes larger than that for R22 due to high density of R410a refrigerant. Therefore, Pressure-Volume analyses for various design parameters of a discharge system were carried out to improve efficiency of a R410a rotary compressor. The results such as performance dta, over-compression loss, and re-expansion loss were acquired by P-V analyses and analyzed quantitatively. As a conclusion, the optimal specifications of several design parameters of a discharge system were obtained by analyzing P-V diagrams.

  • PDF

A Study on the Relief Valve Modeling and Performance Analysis of Hydrogen Compressor (수소 압축기용 릴리프 밸브 모델링 및 성능해석에 관한 연구)

  • Park, Sang-Beop;Kim, Gyu-Bo;Jeon, Chung-Hwan;Yun, So-Nam;Kewon, Byung-Soo
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.20 no.3
    • /
    • pp.179-187
    • /
    • 2009
  • This paper presents a static and dynamic characteristics of the relief valve which is a kind of direct operated pressure control valve for hydrogen compressor. The valve is consisted of a main poppet, a spring, an adjuster and a valve body. The purpose of this study is development of the simulation model for relief valve by using commercial AMESlM$^{(R)}$ tool. Poppet with sharp edge seat type and ball poppet with sharp edge seat type compare for P-Q characteristic. The dynamic simulation results are presented the operating pressure characteristics of relief valve. High pressure power unit of which maximum pressure control range is 100MPa was manufactured, and the pressure control valve was experimented using the above-mentioned power unit. The new model of pressure control valve from this results was suggested. It was confirmed that the suggested valve has a good control performance from experimental setup.

The built-in sensor bearing to measure shaft behavior of compressor for air-conditioning (공조용 압축기 축 거동 측정용 베어링 내장형 센서)

  • 김지운;안형준;김지영;한동철;윤정호;황인수
    • Proceedings of the Korean Society of Tribologists and Lubrication Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.230-236
    • /
    • 2001
  • We developed a built-in sensor bearing to measure the rotor motion of a rolling piston type compressor for the air conditioner. Because of needs for the high efficiency and long life span of compressor, and the usage of alternative refrigerants, the operating condition of the compressor becomes more severe. The accurate measurement of the rotor motion of the compressor can contribute greatly to the design and analysis of the hydrodynamic bearing. However, it is difficult to measure accurately the shaft behavior of small compressor because of the small space for the sensor mount, high temperature and pressure of compressor, oil mixed with refrigerant, and electromagnetic noise of the motor. To overcome these difficulties, we develop the cylindrical capacitive sensor that is built in the hydrodynamic bearing and calibrate the built-in sensor bearing indirectly through measuring the oil relative permittivity. We measured the rotor motion as well as suction and discharge pressures in various conditions. The several experimental results show that the developed built-in sensor bearing can measure the rotor motion not only in steady state but also in transient state.

  • PDF

Experimental Study of Characteristics on Double Heat Exchange Pipe Used Separation Type Air-Conditioner (분리형 에어컨용 2중 열교환 배관 특성에 관한 실험적 연구)

  • Kim, J.D.
    • Journal of Power System Engineering
    • /
    • v.10 no.4
    • /
    • pp.31-37
    • /
    • 2006
  • In this study, the ability for the function of double pipe inserted liquid pipe with small diameter in the gas pipe with large diameter for the circulating of liquid of high temperature and high pressure and low temperature and low pressure at the same time is presented. And in this double pipe, liquid pipe of high temperature and pressure is used to connect condenser and expansion valve and gas pipe of low temperature is used to connect evaporator and compressor. Also, when liquid refrigerant of high temperature and gas refrigerant of low temperature is circulated by reversed flow in the double pipe. The contribution of liquid gas heat exchange pipe is studied by comparison of the effect of heat transfer by temperature difference when liquid pipe and gas pipe is installed separately.

  • PDF

Optimal Gas Detection System in Cargo Compressor Room of Gas Fueled LNG Carrier (가스추진 LNG 운반선의 가스 압축기실에 설치된 가스검출장치의 최적 배치에 관한 연구)

  • Lee, Sang-Won;Shao, Yude;Lee, Seung-Hun;Lee, Jin-Uk;Jeong, Eun-Seok;Kang, Ho-Keun
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.25 no.5
    • /
    • pp.617-626
    • /
    • 2019
  • This study analyzes the optimal location of gas detectors through the gas dispersion in a cargo compressor room of a 174K LNG carrier equipped with high-pressure cargo handling equipment; in addition, we propose a reasonable method for determining the safety regulations specified in the new International Code of the Construction and Equipment of Ships Carrying Liquefied Gases in Bulk (IGC). To conduct an LNG gas dispersion simulation in the cargo compressor room-equipped with an ME-GI engine-of a 174 K LNG carrier, the geometry of the room as well as the equipment and piping, are designed using the same 3D size at a 1-to-1 scale. Scenarios for a gas leak were examined under high pressure of 305 bar and low pressure of 1 bar. The pinhole sizes for high pressure are 4.5, 5.0, and 5.6mm, and for low pressure are 100 and 140 mm. The results demonstrate that the cargo compressor room will not pose a serious risk with respect to the flammable gas concentration as verified by a ventilation assessment for a 5.6 mm pinhole for a high-pressure leak under gas rupture conditions, and a low-pressure leak of 100 and 140 mm with different pinhole sizes. However, it was confirmed that the actual location of the gas detection sensors in a cargo compressor room, according to the new IGC code, should be moved to other points, and an analysis of the virtual monitor points through a computational fluid dynamics (CFD) simulation.

Design of an air-cooled high-pressure 3-stage reciprocating air compressor, applied to the starting of diesel engines (디젤엔진 시동용 공냉식 고압 3단 왕복동 공기압축기의 설계)

  • 이안성;김영철;정영식;왕지석
    • Journal of Advanced Marine Engineering and Technology
    • /
    • v.22 no.1
    • /
    • pp.42-51
    • /
    • 1998
  • A 150 m$\^$3//hr, 30 kg/cm$\^$2/, air-cooled 3-stage reciprocating air compressor is designed to be used in starting large diesel engines of ships. A basic design procedure is presented to meet the targeted pressure and flow rate, and especially a volumetric efficiency of 80%. Temperature and stress analysis of the 1st stage cylinder are performed using axisymmetric FEM modelings. The dynamics of valve system is analyzed and stress at the 1st stage valve seat caused by valve impact is evaluated. To reduce friction loss and wear at the compressor engine system tribological design issues are reviewed and good design practices are suggested. Finally, forced-air pin-type interstage coolers are designed to dissipate generated compression heat at each stage.

  • PDF

Design and Prototyping Micro Centrifugal Compressor for Ultra Micro Gas Turbine

  • Hirano, Toshiyuki;Tsujita, Hoshio;Gu, Ronglei;Minorikawa, Gaku
    • International Journal of Fluid Machinery and Systems
    • /
    • v.2 no.4
    • /
    • pp.426-430
    • /
    • 2009
  • In order to investigate the design method for a micro centrifugal compressor, which is the most important component of an ultra micro gas turbine, an impeller having the outer diameter of 20mm was designed, manufactured and tested. The designed rotational speed is 500,000 rpm and the impeller has a fully 3-dimensional shape. The impeller was rotated at 250,000 rpm in the present study. The experimental results of the tested compressor with the vaned and the vaneless diffusers were compared. It was found that the vaned diffuser attained the higher flow rate than the vaneless diffuser at the maximum pressure ratio. In addition the maximum pressure ratio was higher for the diffuser having a larger diffuser divergence angle at the high flow rate. These results were compared with those obtained by the prediction method used at the design stage.

Friction Characteristics Between Vane and Rolling Piston in a Rotary Compressor Used for Refrigeration and Air-Conditioning Systems

  • Cho, Ihn-Sung;Baek, Il-Hyun;Oh, Seok-Hyung;Jung, Jae-Youn
    • KSTLE International Journal
    • /
    • v.9 no.1_2
    • /
    • pp.17-21
    • /
    • 2008
  • The rolling piston type rotary compressor has been widely used for refrigeration and air-conditioning systems due to its compactness and high-speed operation. The present study is one of studies to maximize the advantages of refrigerant compressors. In addition, because friction characteristics of the critical sliding component is essential in the design of refrigerant compressors, the present study also analyzed the lubrication characteristics of a rotary compressor used for refrigeration and air-conditioning systems. In order to measure the friction force between the vane and the rolling piston, an experimental apparatus known as the Pin-on-Disk was used. Load is applied by the hydraulic servo valve controlling the pressure of the hydraulic cylinder. The results showed that the rotational speed of the shaft, the operating temperature, and the discharge pressure significantly influenced the friction force between the vane and the rolling piston.

Analyses of Thrust Bearing in a Scroll Compressor Considering Oldham Ring (올댐링을 고려한 스크롤 압축기 스러스트 베어링의 해석)

  • Park, Sang-Shin;Lee, Seung-Ryoul
    • Tribology and Lubricants
    • /
    • v.23 no.3
    • /
    • pp.109-116
    • /
    • 2007
  • A scroll compressor is on the increase in the use for the cooling and ambition machinery because of the advantages about high efficiency, low vibration and low noise. The design of thrust bearing for scroll compressor has depended on the experience. The lubrication considering the squeeze flow was applied for high side shell and low side shell of scroll thrust bearing. This work was based on governing fluid lubrication equation at the general coordinate. It shows the behavior for an orbiting scroll with direct numerical analysis using FDM. This study obtained the theoretical design value by finding load capacity and tilting angle of an orbiting scroll for thrust bearing in a scroll compressor. Especially this work performed the analysis about the design parameter. The program was written using Visual C++ to enhance user to change the design parameter easily. In particular the result value and the pressure profile were displayed as windows in every step for user to understand without difficulty.

Compressor Performance with Variation of Diffuser Vane Inlet Angle (디퓨저 베인각의 변화에 따른 압축기 성능 특성)

  • Bae, M. H.;Shin, Y. H.;Kim, K. H.;Kim, J. H.
    • 유체기계공업학회:학술대회논문집
    • /
    • 1999.12a
    • /
    • pp.55-60
    • /
    • 1999
  • A centrifugal compressor was tested with three different diffusers with plate vanes. The vane inlet angle was varied from 15 to 30 dog. The higher static pressure rises are obtained with lower vane stagger angle. In the stable region the static pressure field in vaneless space is very sensitive to flow rate. The impeller has a stabilizing effect over the whole stable operating range. The diffuser has a stabilizing effect at high flow rate but is destabilizing at low flow rate.

  • PDF