• Title/Summary/Keyword: high porosity

Search Result 1,031, Processing Time 0.024 seconds

Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향 (Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy)

  • 이영재;강원국;어광준;조규상;이기안
    • 소성∙가공
    • /
    • 제18권4호
    • /
    • pp.296-303
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore for its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

Al-Si-Mg계 주조용 알루미늄 합금의 고주기 피로 거동에 미치는 기공의 영향 (Effect of Porosity on the High-Cycle Fatigue Behavior of Al-Si-Mg Casting Alloy)

  • 이영재;강원국;어광준;조규상;이기안
    • 한국소성가공학회:학술대회논문집
    • /
    • 한국소성가공학회 2009년도 춘계학술대회 논문집
    • /
    • pp.350-352
    • /
    • 2009
  • The effect of porosity on the high-cycle fatigue properties of Al-Si-Mg casting aluminum alloys was investigated in this study. Microstructure examination, tensile and high-cycle fatigue test were conducted on both Al-Si-Mg casted (F) and heat-treated (T6) conditions. Porosity characteristics on the fracture surfaces of fatigue-tested samples were examined using SEM and image analysis. The microstructure observation results showed that eutectic Si particles were homogeneously dispersed in the matrix of the Al-Si-Mg casting alloys, but there were porosities formed as cast defects. The high-cycle fatigue results indicated that the fatigue strength of the 356-T6 alloy was higher than that of the 356-F alloys because of the significant reduction in volume fraction of pores by heat treatment. The SEM fractography results showed that porosity affected detrimental effect on the fatigue life: 80% of all tested samples fractured as a result of porosity which acted as the main crack initiation site. It was found that fatigue life decreased as the size of the surface pore increased. A comparison was made between surface pore and inner pore fur its effect on the fatigue behavior. The results showed that the fatigue strength with the inner pores was higher than that of the surface pore.

  • PDF

인삼포 두둑높이가 인삼의 생육 및 토양물리성에 미치는 영향 (Effect of Bed Height on Ginseng Growth and Soil Physical Properties)

  • 이일호;박찬수
    • Journal of Ginseng Research
    • /
    • 제15권3호
    • /
    • pp.197-199
    • /
    • 1991
  • Growth of ginseng and physical properties of soil were compared with bed height in experimental plots of sand loam for four year and clay loam soil for three year old ginseng plants, respectively. Field survey was also carried out to compare yield and soil physical properties with bed height in the same fold of six years old ginseng fields. High yield of ginseng root was observed at high bed both in the experimental plots and field survey as well. The rate of rusty root was significantly reduced at high bed. Soil porosity increased but soil hardness decreased at high bed.

  • PDF

초박형 태양전지 제작에 Porous Silicon Layer Transfer기술 적용을 위한 전기화학적 실리콘 에칭 조건 최적화에 관한 연구 (Optimization of Electrochemical Etching Parameters in Porous Silicon Layer Transfer Process for Thin Film Solar Cell)

  • 이주영;구연수;이재호
    • 마이크로전자및패키징학회지
    • /
    • 제18권1호
    • /
    • pp.23-27
    • /
    • 2011
  • 전기화학적 에칭을 이용한 다공성 실리콘 이중층 형성은 초박형 태양전지 제작에서 PS layer transfer 기술을 적용하기 위한 선행 공정이다. 다공성 실리콘 층의 다공도는 전류밀도와 에칭용액 내 불산의 농도를 조절하여 제어할 수 있다. 전기화학적 에칭을 이용한 다공성 실리콘 형성을 위하여 비저항 $0.01-0.02\;{\Omega}{\cdot}cm$의 p-type (100)의 실리콘 웨이퍼를 사용하였으며, 에칭용액의 조성은 HF (40%) : $C_2H_5OH$(99 %) : $H_2O$ = 1 : 1 : 2 (volume)으로 고정하였다. PS layer transfer 기술에 사용되는 다공성 실리콘 이중층을 형성하기 위해서 에칭 도중 전류밀도를 낮은 전류밀도 조건에서 높은 전류밀도 조건으로 변환하여 low porosity layer 하부에 high porosity layer를 형성할 수 있다.

공극률을 이용한 고성능 콘크리트의 압축강도 특성 모델링 (Modeling on Compressive Strength in High Performance Concrete Using Porosity)

  • 이학수;권성준
    • 한국구조물진단유지관리공학회 논문집
    • /
    • 제16권6호
    • /
    • pp.124-133
    • /
    • 2012
  • 콘크리트의 강도는 시간에 따라 증가하며, 많은 연구에서 시간에 대한 회귀 분석식을 사용하고 있다. 본 연구는 수화물량을 수화도 및 공극률의 함수로 가정하였으며, 재령의 증가에 따라 감소하는 공극률을 이용하여 고성능 콘크리트의 압축강도 모델링을 수행하였다. 본 연구에서는 기존의 시간에 대한 회귀분석없이 공극률의 감소만을 이용하여 압축강도를 예측하였다. 총 21개의 고성능 콘크리트 배합에 대해 초기재령 콘크리트의 거동 해석프로그램인 DUCOM을 이용하여 각각의 공극률을 도출하였으며, 강도 모델링을 수행하였다. OPC 콘크리트에 대해서 수화도, 단위시멘트량, 공극률의 함수로 강도 예측식을 제안하였으며, GGBFS 및 FA를 혼입한 콘크리트에 대해서는 장기강도 영향을 구현하기 위해 공극률을 고려한 장기강도변수를 도입하였다. 기존의 실험결과와의 비교를 통하여 제안된 강도예측식의 타당성을 입증하였다.

Progresses on the Optimal Processing and Properties of Highly Porous Rare Earth Silicate Thermal Insulators

  • Wu, Zhen;Sun, Luchao;Wang, Jingyang
    • 한국세라믹학회지
    • /
    • 제55권6호
    • /
    • pp.527-555
    • /
    • 2018
  • High-temperature thermal insulation materials challenge extensive oxide candidates such as porus $SiO_2$, $Al_2O_3$, yttria-stabilized zirconia, and mullite, due to the needs of good mechanical, thermal, and chemical reliabilities at high temperatures simultaneously. Recently, porous rare earth (RE) silicates have been revealed to be excellent thermal insulators in harsh environments. These materials display attractive properties, including high porosity, moderately high compressive strength, low processing shrinkage (near-net-shaping), and very low thermal conductivity. The current critical challenge is to balance the excellent thermal insulation property (extremely high porosity) with their good mechanical properties, especially at high temperatures. Herein, we review the recent developments in processing techniques to achieve extremely high porosity and multiscale strengthening strategy, including solid solution strengthening and fiber reinforcement methods, for enhancing the mechanical properties of porous RE silicate ceramics. Highly porous RE silicates are highlighted as emerging high-temperature thermal insulators for extreme environments.

Mix Design for Pervious Recycled Aggregate Concrete

  • Sriravindrarajah, Rasiah;Wang, Neo Derek Huai;Ervin, Lai Jian Wen
    • International Journal of Concrete Structures and Materials
    • /
    • 제6권4호
    • /
    • pp.239-246
    • /
    • 2012
  • Pervious concrete is a tailored-property concrete with high water permeability which allow the passage of water to flow through easily through the existing interconnected large pore structure. This paper reports the results of an experimental investigation into the development of pervious concrete with reduced cement content and recycled concrete aggregate for sustainable permeable pavement construction. High fineness ground granulated blast furnace slag was used to replace up to 70 % cement by weight. The properties of the pervious concrete were evaluated by determining the compressive strength at 7 and 28 days, void content and water permeability under falling head. The compressive strength of pervious concrete increased with a reduction in the maximum aggregate size from 20 to 13 mm. The relationship between 28-day compressive strength and porosity for pervious concrete was adversely affected by the use of recycled concrete aggregate instead of natural aggregate. However, the binder materials type, age, aggregate size and test specimen shape had marginal effect on the strength-porosity relationship. The results also showed that the water permeability of pervious concrete is primarily influenced by the porosity and not affected by the use of recycled concrete aggregate in place of natural aggregate. The empirical inter-relationships developed among porosity, compressive strength and water permeability could be used in the mix design of pervious concrete with either natural or recycled concrete aggregates to meet the specification requirements of compressive strength and water permeability.

Laboratory experiments on the improvement of rockfill materials with composite grout

  • Wang, Tao;Liu, Sihong;Lu, Yang
    • Geomechanics and Engineering
    • /
    • 제17권3호
    • /
    • pp.307-316
    • /
    • 2019
  • Dam deformation should be strictly controlled for the construction of 300 m-high rockfill dams, so the rockfill materials need to have low porosity. A method of using composite grout is proposed to reduce the porosity of rockfill materials for the construction of high rockfill dams. The composite grout is a mixture of fly ash, cement and sand with the properties of easy flow and post-hardening. During the process of rolling compaction, the grout admixture sprinkled on the rockfill surface will gradually infiltrate into the inter-granular voids of rockfill by the exciting force of vibratory roller to reduce the porosity of rockfill. A visible flowing test was firstly designed to explore the flow characteristics of composite grout in porous media. Then, the compressibility, shear strength, permeability and suffusion susceptibility properties of composite grout-modified rockfill are studied by a series of laboratory tests. Experimental results show that the flow characteristics of composite grout are closely related to the fly ash content, the water-to-binder ratio, the maximum sand size and the content of composite grout. The filling of composite grout can effectively reduce the porosity of rockfill materials, as well as increase the compression modulus of rockfill materials, especially for loose and gap-graded rockfill materials. Composite grout-modified rockfill tends to have greater shear strength, larger suffusion erosion resistance, and smaller permeability coefficient. The composite grout mainly plays the roles of filling, lubrication and cementation in rockfill materials.

Al 박육 다이캐스팅 주물에서 기포결함에 미치는 주물두께, 사출속도의 영향 (Effect of Casting Thickness and Plunger Velocity on Porosity in Al Plate Diecasting)

  • 강호정;박진영;김억수;조경목;박익민
    • 한국주조공학회지
    • /
    • 제35권4호
    • /
    • pp.80-87
    • /
    • 2015
  • The Al die casting process has been widely used in the manufacturing of automotive parts when the process requires near-net shape casting and a high productive rate. However, porosity arises in the casting process, and this hampers the wider use of this method for the creation of high-durability automotive components. The porosity can be controlled by the shot condition, but, it is critical to set the shot condition in the sleeve, and it remains difficult to optimize the shot condition to avoid air entrapment efficiently. In this study, the 4.5 mm, 2.0 mm plate die castings were fabricated under various shot conditions, such as plunger velocities of 0.7 m/s ~ 3.0 m/s and fast shot set points of the cavity of -25%, 0%, 25%, and 50%. The mold filling behavior of Al melts in the cavity was analyzed by a numerical method. Also, according to the shot conditions, the results of numerical analyses were compared to those of die-casting experiments. The porosity levels of the plate castings were analyzed by X-ray CT images and by density and microstructural analyses. The effects of the porosity on the mechanical properties were analyzed by tensile tests and hardness tests. The simulation results are in good general agreements with the die-casting experimental results. When plunger velocity and fast shot set point are 1.0 m/s and cavity 25% position, castings had optimum condition for good mechanical properties and a low level of porosity.

반응소결법 및 통전가압소결법에 의한 $Ti_5Si_3$계 금속간화합물의 합성 및 치밀화 (Synthesis and Densification of $Ti_5Si_3$-base Intermetallic Compounds by Reactive Sintering and Electro-Pressure Sintering)

  • 유호준
    • 한국분말재료학회지
    • /
    • 제4권4호
    • /
    • pp.283-290
    • /
    • 1997
  • $Ti_5Si_3$ intermetallics containing 0-6 wt% of Cu were made by reactive sintering (RS) under vacuum using elemental powder mixtures (Process 1), electro-pressure sintering (EPS) using RS'ed materials (Process2), and EPS using elemental powder mixtures (Process 3). Relatively low dense titanium silicides were gained by process 1, in which porosity decreased with increasing Cu content. For example, porosity changed from 42 to 19.4% with the increase in Cu content from 0 to 6 wt%, indicating that Cu is a useful sintering aid. The titanium silicides fabricated by Process 2 had a higher density than those by Process 1 at given composition, and porosity decreased with increasing Cu content. For example, porosity decreased from 38 to 6.8% with the change in Cu content from 0 to 6 wt%. A high dense titanium silicides were obtained by Process 3. In this Process, porosity decreased a little by Cu addition, and was almost insensitive to Cu content. Namely, about 9 or 7% of porosity was shown in 0 or 1-6 wt% Cu containing silicides, respectively. The hardeness increased by Cu addition, and was not changed markedly with Cu content for the silicides fabricated by Process 3. This tendency was considered to be resulted from porosity, hardening of grain interior by Cu addition, and softening of grain boundary by Cu-base segregates. All these results suggested that EPS using elemental powder mixtures (Process 3) is an effective processing method to achieve satisfactorily dense titanium silicides.

  • PDF