• Title/Summary/Keyword: high pore water pressure

Search Result 133, Processing Time 0.02 seconds

Liquefaction Evaluation by One-Dimensional Effective Stress Analysis Using UBC3D-PLM Model (UBC3D-PLM 모델을 이용한 1차원 유효응력해석에 의한 액상화 평가)

  • Jung-Hoe Kim;Hyun-Sik Jin
    • The Journal of Engineering Geology
    • /
    • v.33 no.1
    • /
    • pp.151-167
    • /
    • 2023
  • This study compares the revised method in loose saturated sandy ground where the LNG storage tank will be installed with an evaluation method by one-dimensional effective stress analysis using the UBC3D-PLM model. Various laboratory and field tests were conducted to establish the parameters necessary for evaluation. The revised liquefaction evaluation method using the seismic response analysis result and N value from standard penetration testing evaluated the possibility of liquefaction as high, but assessment using effective stress analysis, which can consider various liquefaction resistance factors, found the site to be somewhat stable against liquefaction. One-dimensional finite element analysis using UBC3D-PLM modeling facilitated easier assessment of stability against liquefaction than the other methods and minimized the area required for reinforcement against liquefaction. In addition, it is expected that two-and three-dimensional numerical analysis considering the foundation of the LNG storage tank can identify the seismic design and behavior when liquefaction occurs.

Numerical Modelling of One Dimensional Gas Injection Experiment using Mechanical Damage Model: DECOVALEX-2019 Task A Stage 1A (역학손상모델을 이용한 1차원 기체 주입 시험 모델링: 국제공동연구 DECOVALEX-2019 Task A Stage 1A)

  • Lee, Jaewon;Lee, Changsoo;Kim, Geon Young
    • Tunnel and Underground Space
    • /
    • v.29 no.4
    • /
    • pp.262-279
    • /
    • 2019
  • In the engineering barriers of high-level radioactive waste disposal, gases could be generated through a number of processes. If the gas production rate exceeds the gas diffusion rate, the pressure of the gas increases and gases could migrate through the bentonite buffer. Because people and the environment can be exposed to radioactivity, it is very important to clarify gas migration in terms of long-term integrity of the engineered barrier system. In particular, it is necessary to identify the hydro-mechanical mechanism for the dilation flow, which is a very important gas flow phenomenon only in medium containing large amounts of clay materials such as bentonite buffer, and to develop and validate new numerical approach for the quantitative evaluation of the gas migration phenomenon. Therefore, in this study, we developed a two-phase flow model considering the mechanical damage model in order to simulate the gas migration in the engineered barrier system, and validated with 1D gas flow modelling through saturated bentonite under constant volume boundary conditions. As a result of numerical analysis, the rapid increase in pore water pressure, stress, and gas outflow could be simulated when the dilation flow was occurred.

A Numerical Study of the Performance Assessment of Coupled Thermo-Hydro-Mechanical (THM) Processes in Improved Korean Reference Disposal System (KRS+) for High-Level Radioactive Waste (수치해석을 활용한 향상된 한국형 기준 고준위방사성폐기물 처분시스템의 열-수리-역학적 복합거동 성능평가)

  • Kim, Kwang-Il;Lee, Changsoo;Kim, Jin-Seop
    • Tunnel and Underground Space
    • /
    • v.31 no.4
    • /
    • pp.221-242
    • /
    • 2021
  • A numerical study of the performance assesment of coupled thermo-hydro-mechanical (THM) processes in improved Korean reference disposal system (KRS+) for high-level radioactive waste is conducted using TOUGH2-MP/FLAC3D simulator. Decay heat from high-level radioactive waste increases the temperature of the repository, and it decreases as decay heat is reduced. The maximum temperature of the repository is below a maximum temperature criterion of 100℃. Saturation of bentonite buffer adjacent to the canister is initially reduced due to pore water evaporation induced by temperature increase. Bentonite buffer is saturated 250 years after the disposal of high-level radioactive waste by inflow of groundwater from the surrounding rock mass. Initial saturation of rock mass decreases as groundwater in rock mass is moved to bentnonite buffer by suction, but rock mass is saturated after inflow of groundwater from the far-field area. Stress changes at rock mass are compared to the Mohr-Coulomb failure criterion and the spalling strength in order to investigate the potential rock failure by thermal stress and swelling pressure. Additional simulations are conducted with the reduced spacing of deposition holes. The maximum temperature of bentonite buffer exceeds 100℃ as deposition hole spacing is smaller than 5.5 m. However, temperature of about 56.1% volume of bentonite buffer is below 90℃. The methodology of numerical modeling used in this study can be applied to the performance assessment of coupled THM processes for high-level radioactive waste repositories with various input parameters and geological conditions such as site-specific stress models and geothermal gradients.

Performance and reusability of certified and uncertified face masks (보건용 마스크 초미세먼지 제거 성능 평가 및 재사용 연구)

  • Lee, Haebum;Kim, Seojeong;Joo, HungSoo;Cho, Hee-joo;Park, Kihong
    • Particle and aerosol research
    • /
    • v.15 no.4
    • /
    • pp.191-202
    • /
    • 2019
  • In this study, performance (particle removal efficiency and breathing resistance) of several commercially available face masks (electrostatic filter masks (KF80 certified), a nanofiber filter mask (KF80 certified), and an uncertified mask) with their filter structure and composition were evaluated. Also, effects of relative humidity (RH) of incoming air, water and alcohol exposure, and reusability on performance of face masks were examined. Monodisperse and polydisperse sodium chloride particles were used as test aerosols. Except the uncertified mask filter, PM2.5 removal efficiency was found to be higher than 90%, and the nanofiber filter mask had the highest quality factor due to the low pressure drop and high removal efficiency (nanofibers were arranged in a densely packed pore structure and contained a significant amount of fluorine in addition to carbon and oxygen). In the case of the KF80 certified mask, the removal efficiency was little affected when the RH of incoming air increased. When the mask filters were soaked in water, the removal efficiency of mask filters was degraded. In particular, the uncertified mask filter showed the highest removal efficiency degradation (26%). When the mask was soaked in alcohol, the removal efficiency also decreased with the greater degree than the water soaking case. The nanofiber mask filter showed the strongest resistance to alcohol exposure among tested mask filters. During evaluation of reusability of masks in real life, the removal efficiency of certified mask filter was less than 4% for 5 consecutive days (2 hours per day), while the removal efficiency of uncertified mask filter significantly decreased by 30% after 5 days.

Effect of Wave-Induced Seepage on the Stability of the Rubble Mound Breakwater (동적 파랑에 의한 침투류가 사석경사식 방파구조물의 안정성에 미치는 영향)

  • Hwang, Woong-Ki;Kim, Tae-Hyung;Kim, Do-Sam;Oh, Myounghak;Park, Jun-Young
    • Journal of the Korean Geotechnical Society
    • /
    • v.34 no.3
    • /
    • pp.13-27
    • /
    • 2018
  • To study how stable the rubble mound breakwaters are, one can look to the research of wave induced seepage flow through the pores of the rubble mound. Seepage flow is generally generated by the difference between the water level around the breakwater during a typhoon. The existing stability analysis method of the rubble mound is the static analysis which simply considers the force equilibrium taking into account the horizontal force acting on the concrete block induced by a wave (calculated by Goda equation) and the vertical force induced by the weight inclusive of the concrete block, quarry run, filter, and armor layer above the slipping plane. However, this static method does not consider the wave-induced seepage flow in the rubble mound. Such seepage may decrease the stability of the rubble mound. The stability of a rubble mound breakwater under the action of seepage was studied based on the results of CFD software (OpenFOAM) and Limit Equilibrium Method (GeoStudio). The numerical analysis result showed that the seepage flow decreased the stability of the rubble mound breakwaters. The results of the numerical analyses also revealed the stability of the rubble mound was varied with time. Especially, the most critical state happened at the condition of overtopping the concrete block, acting strong uplift pressure raising along side and underneath the concrete block, and generating high pore pressure inside rubble mound due to seepage flow. Therefore, it may be necessary to conduct a dynamic analysis considering the effect of wave-induce seepage flow together with the static analysis.

Study on Landslide Hazard Possibility for Mt. Hwangryeong in Busan Metropolitan City Using the Infinite Slope Model (무한사면 모델을 이용한 부산 황령산 산사태 재해 평가 가능성 검토)

  • Kim, Jae Min;Choi, Jung Chan
    • The Journal of Engineering Geology
    • /
    • v.26 no.3
    • /
    • pp.413-422
    • /
    • 2016
  • With the rapidly increasing population density and development of infrastructure, the loss of life and property damage caused by landslides has increased gradually in urban area. Especially, Because Busan has high percentage of mountainous terrain among the metropolitan in Korea, it is unavoidable to develop mountainous region excessively. The objective of this evaluation is to study on landslide hazard possibility for Mt. Hwangryeong in Busan Metropolitan City using the infinite slope model considering the groundwater level. All data related to creating the thematic maps was carried out using ArcGIS 10.0. The results show that FS (Factor of Safety) for landslide is inversely proportional to groundwater level change as expected. Most area indicates stable state in dry condition, and unstable area increase due to high pore water pressure when the groundwater level rise. However, several places in high lineament density area where landslide has been previously occurred, are more stable than other places according to the analysis. This inconsistency between real situation and analysis results indicates that additional analytical method would be necessary to solve the problem. Therefore, we suggest that development of new infiltration theory for unsaturated zone would be helpful to evaluate groundwater level distribution as time goes by.

A Literature Review on Studies of Bentonite Alteration by Cement-bentonite Interactions (시멘트-벤토나이트 상호작용에 의한 벤토나이트 변질 연구사례 분석)

  • Goo, Ja-Young;Kim, Jin-Seok;Kwon, Jang-Soon;Jo, Ho Young
    • Economic and Environmental Geology
    • /
    • v.55 no.3
    • /
    • pp.219-229
    • /
    • 2022
  • Bentonite is being considered as a candidate for buffer material in geological disposal systems for high-level radioactive wastes. In this study, the effect of cement-bentonite interactions on bentonite alteration was investigated by reviewing the literature on studies of cement-bentonite interactions. The major bentonite alteration by hyperalkaline fluids produced by the interaction of cementitious materials with groundwater includes cation exchange, montmorillonite dissolution, secondary mineral precipitation, and illitization. When the hyperalkaline leachate from the reaction of the cementitious material with the groundwater comes into contact with bentonite, montmorillonite, the main component of bentonite, is dissolved and a small amount of secondary minerals such as zeolite, calcium silicate hydrate, and calcite is produced. When montmorillonite is continuously dissolved, the physicochemical properties of bentonite may change, which may ultimately causes changes in bentonite performance as a buffer material such as adsorption capacity, swelling capacity, and hydraulic conductivity. In addition, the bentonite alteration is affected by various factors such as temperature, reaction period, pressure, composition of pore water, bentonite constituent minerals, chemical composition of montmorillonite, and types of interlayer cations. This study can be used as basic information for the long-term stability verification study of the buffer material in the geological disposal system for high-level radioactive wastes.

Instrumentation Management of Differential Settlement of the Deep Soft Ground with Dredged Clay Reclaimed in the Upper (대심도 준설 매립지반에서의 층별침하 계측관리에 관한 사례 연구)

  • Tae-Hyung Kim;Seung-Chan Kang;Ji-Gun Chang;Soung-Hun Heo
    • Journal of the Korean Geosynthetics Society
    • /
    • v.22 no.1
    • /
    • pp.87-96
    • /
    • 2023
  • There are a lot of difference between the surface settlement and the differential settlement measured at the Busan New Port, where the dredged and reclaimed clay layer exists and below the clay is originally thickly distributed. To find the cause and solution of this, the actual conditions of each differential settlement used for the soft ground improvement, characteristics, installation method, measurement frequency, measurement data management, and data analysis of each type were considered. In the deep soft ground improvement work where large deformation occurs, the bending deformation of the screw-type differential settlement gauge is less than that of other types of measuring instruments, so there is less risk of loss, and the reliability of data is relatively high as the instruments are installed by drilling for each stratum. Since the greater the amount of high-precision settlement measurement data, the higher the settlement analysis precision. It is necessary to manage with higher criteria than the measurement frequency suggested in the standard specification. For the data management of the differential settlement gauge, it is desirable to create graphs of the settlement and embankment height of the relevant section over time, such as surface, differential, and settlement of pore water pressure gauge for each point. In the case of multi-layered ground with different compression characteristics, it is more appropriate to perform settlement analysis by calculating the consolidation characteristics of each stratum using a differential settlement data.

Perfluoropolymer Membranes of Tetrafluoroethylene and 2,2,4Trifluofo- 5Trifluorometoxy- 1,3Dioxole.

  • Arcella, V.;Colaianna, P.;Brinati, G.;Gordano, A.;Clarizia, G.;Tocci, E.;Drioli, E.
    • Proceedings of the Membrane Society of Korea Conference
    • /
    • 1999.07a
    • /
    • pp.39-42
    • /
    • 1999
  • Perfluoropolymers represent the ultimate resistance to hostile chemical environments and high service temperature, attributed to the presence of fluorine in the polymer backbone, i.e. to the high bond energy of C-F and C-C bonds of fluorocarbons. Copolymers of Tetrafluoroethylene (TEE) and 2, 2, 4Trifluoro-5Trifluorometoxy- 1, 3Dioxole (TTD), commercially known as HYFLON AD, are amorphous perfluoropolymers with glass transition temperature (Tg)higher than room temperature, showing a thermal decomposition temperature exceeding 40$0^{\circ}C$. These polymer systems are highly soluble in fluorinated solvents, with low solution viscosities. This property allows the preparation of self-supported and composite membranes with desired membrane thickness. Symmetric and asymmetric perfluoropolymer membranes, made with HYFLON AD, have been prepared and evaluated. Porous and not porous symmetric membranes have been obtained by solvent evaporation with various processing conditions. Asymmetric membranes have been prepared by th wet phase inversion method. Measure of contact angle to distilled water have been carried out. Figure 1 compares experimental results with those of other commercial membranes. Contact angles of about 120$^{\circ}$for our amorphous perfluoropolymer membranes demonstrate that they posses a high hydrophobic character. Measure of contact angles to hexandecane have been also carried out to evaluate the organophobic character. Rsults are reported in Figure 2. The observed strong organophobicity leads to excellent fouling resistance and inertness. Porous membranes with pore size between 30 and 80 nanometers have shown no permeation to water at pressures as high as 10 bars. However high permeation to gases, such as O2, N2 and CO2, and no selectivities were observed. Considering the porous structure of the membrane, this behavior was expected. In consideration of the above properties, possible useful uses in th field of gas- liquid separations are envisaged for these membranes. A particularly promising application is in the field of membrane contactors, equipments in which membranes are used to improve mass transfer coefficients in respect to traditional extraction and absorption processes. Gas permeation properties have been evaluated for asymmetric membranes and composite symmetric ones. Experimental permselectivity values, obtained at different pressure differences, to various single gases are reported in Tab. 1, 2 and 3. Experimental data have been compared with literature data obtained with membranes made with different amorphous perfluoropolymer systems, such as copolymers of Perfluoro2, 2dimethyl dioxole (PDD) and Tetrafluorethylene, commercialized by the Du Pont Company with the trade name of Teflon AF. An interesting linear relationship between permeability and the glass transition temperature of the polymer constituting the membrane has been observed. Results are descussed in terms of polymer chain structure, which affects the presence of voids at molecular scale and their size distribution. Molecular Dyanmics studies are in progress in order to support the understanding of these results. A modified Theodoru- Suter method provided by the Amorphous Cell module of InsightII/Discover was used to determine the chain packing. A completely amorphous polymer box of about 3.5 nm was considered. Last but not least the use of amorphous perfluoropolymer membranes appears to be ideal when separation processes have to be performed in hostile environments, i.e. high temperatures and aggressive non-aqueous media, such as chemicals and solvents. In these cases Hyflon AD membranes can exploit the outstanding resistance of perfluoropolymers.

  • PDF

Development of Nurserγ Soil for Rice Seedling (Phyllite를 이용한 수도용(水稻用) 육묘(育苗) 상토개발(床土開發))

  • Park, Young-Hee;Chang, Ki-Woon;Hong, Jei-Gu
    • Journal of the Korea Organic Resources Recycling Association
    • /
    • v.10 no.2
    • /
    • pp.71-81
    • /
    • 2002
  • The study was carried out to develop nursery soil for rice seedling of phyllite. First of all, physico-chemical properties of used phyllite in the study through the analysis for agricultural utilization evaluation are as following. Bulk density(BD) of phyllite was $1.31g/cm^3$ each other and porosity had 65% of entire pore size. Also, the water holding capacity(WHC) was 43% at 1/3bar pressure, which phyllite has high WHC. According to, the results the experiments for nursery soil were conducted by mixing the materials such as phyllite, zeolite and hill soil. The mixing ratios were 30, 50, and 70% for zeolite and hill soil into phyllite. These mixed materials were packed in a box by adding 0, 1 and 2g of N-fertilizer. At seedling test, there were increases in the growth of shoot and root of rice for phyllite to zeolite and phyllite to hill soil, respectively. On the other hand, the length of leaf increased with increasing application rate of phyllite, while length and a number of root increased with increasing application rate of hill soil. The growth in the plots of phyllite to zeolite and phyllite to hill soil was better than in control plot. Finally, phyllite plot had efficient results when it compared with others and the study used with phyllite will have to more research and effort for agricultural useful material.

  • PDF