• Title/Summary/Keyword: high performance steel fiber reinforced concrete

Search Result 227, Processing Time 0.028 seconds

Impact response of ultra-high performance fiber-reinforced concrete filled square double-skin steel tubular columns

  • Li, Jie;Wang, Weiqiang;Wu, Chengqing;Liu, Zhongxian;Wu, Pengtao
    • Steel and Composite Structures
    • /
    • v.42 no.3
    • /
    • pp.325-351
    • /
    • 2022
  • This paper studies the lateral impact behavior of ultra-high performance fiber-reinforced concrete (UHPFRC) filled double-skin steel tubular (UHPFRCFDST) columns. The impact force, midspan deflection, and strain histories were recorded. Based on the test results, the influences of drop height, axial load, concrete type, and steel tube wall thickness on the impact resistance of UHPFRCFDST members were analyzed. LS-DYNA software was used to establish a finite element (FE) model of UHPFRC filled steel tubular members. The failure modes and histories of impact force and midspan deflection of specimens were obtained. The simulation results were compared to the test results, which demonstrated the accuracy of the finite element analysis (FEA) model. Finally, the effects of the steel tube thickness, impact energy, type of concrete and impact indenter shape, and void ratio on the lateral impact performances of the UHPFRCFDST columns were analyzed.

Numerical simulation on structural behavior of UHPFRC beams with steel and GFRP bars

  • Yoo, Doo-Yeol;Banthia, Nemkumar
    • Computers and Concrete
    • /
    • v.16 no.5
    • /
    • pp.759-774
    • /
    • 2015
  • This study simulates the flexural behavior of ultra-high-performance fiber-reinforced concrete (UHPFRC) beams reinforced with steel and glass fiber-reinforced polymer (GFRP) rebars. For this, micromechanics-based modeling was first carried out on the basis of single fiber pullout models considering inclination angle. Two different tension-softening curves (TSCs) with the assumptions of 2-dimensional (2-D) and 3-dimensional (3-D) random fiber orientations were obtained from the micromechanics-based modeling, and linear elastic compressive and tensile models before the occurrence of cracks were obtained from the mechanical tests and rule of mixture. Finite element analysis incorporating smeared crack model was used due to the multiple cracking behaviors of structural UHPFRC beams, and the characteristic length of two times the element width (or two times the average crack spacing at the peak load) was suggested as a result of parametric study. Analytical results showed that the assumption of 2-D random fiber orientation is appropriate to a non-reinforced UHPFRC beam, whereas the assumption of 3-D random fiber orientation is suitable for UHPFRC beams reinforced with steel and GFRP rebars due to disorder of fiber alignment from the internal reinforcements. The micromechanics-based finite element analysis also well predicted the serviceability deflections of UHPFRC beams with GFRP rebars and hybrid reinforcements.

High Performance Fiber Reinforced Cement Composites with Innovative Slip Hardending Twisted Steel Fibers

  • Kim, Dong-Joo;Naaman, Antoine E.;El-Tawil, Sherif
    • International Journal of Concrete Structures and Materials
    • /
    • v.3 no.2
    • /
    • pp.119-126
    • /
    • 2009
  • This paper provides a brief summary of the performance of an innovative slip hardening twisted steel fiber in comparison with other fibers including straight steel smooth fiber, high strength steel hooked fiber, SPECTRA (high molecular weight polyethylene) fiber and PVA fiber. First the pull-out of a single fiber is compared under static loading conditions, and slip rate-sensitivity is evaluated. The unique large slip capacity of T-fiber during pullout is based on its untwisting fiber pullout mechanism, which leads to high equivalent bond strength and composites with high ductility. Due to this large slip capacity a smaller amount of T-fibers is needed to obtain strain hardening tensile behavior of fiber reinforced cementitious composites. Second, the performance of different composites using T-fibers and other fibers subjected to tensile and flexural loadings is described and compared. Third, strain rate effect on the behavior of composites reinforced with different types and amounts of fibers is presented to clarify the potential application of HPFRCC for seismic, impact and blast loadings.

Structural Behavior of Hybrid Steel Fiber-Reinforced Ultra High Performance Concrete Beams Subjected to Bending (휨을 받는 하이브리드 강섬유 보강 초고성능 콘크리트 보의 구조 거동)

  • Yang, In-Hwan;Kim, Kyoung-Chul;Joh, Chang-Bin
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.6
    • /
    • pp.771-778
    • /
    • 2014
  • This paper concerns the flexural behavior of hybrid steel fiber-reinforced ultra high performance concrete (UHPC) beams. It presents experimental research results of hybrid steel fiber-reinforced UHPC with steel fiber content of 1.5% by volume and steel reinforcement ratio of less than 0.02. This study aims at providing realistic information about UHPC beams in bending in order to establish a reasonable prediction model for flexural resistance in structural code in the future. The experimental results show that hybrid steel fiber-reinforced UHPC is in favor of cracking resistance and ductility of beams. The ductility indices range through 9.2 to 15.2, which means high ductility of UHPC. Also, the flexural capacity of beam which contains stirrups in pure bending zone is similar to that of beam which does not contain stirrups in pure bending zone. This result represents that the flexural capacity is not affected by the presence of stirrups whose spacing is 150 mm in bending zone.

An Experimental Study on Flexural Behavior of Steel Fiber Reinforced Ultra High Performance Concrete Prestressed Girders (강섬유 보강 초고성능 콘크리트 프리스트레스트 거더의 휨거동 실험 연구)

  • Yang, In-Hwan;Joh, Chang-Bin;Kim, Byung-Suk
    • Journal of the Korea Concrete Institute
    • /
    • v.22 no.6
    • /
    • pp.777-786
    • /
    • 2010
  • This paper examines the flexural behavior of full-scale prestressed concrete girders that were constructed of steel fiber reinforced ultra high performance concrete (UHPC). This study is designed to provide more information about the bending characteristics of UHPC girders in order to establish a reasonable prediction model for flexural resistance and deflection for future structural design codes. Short steel fibers have been introduced into prestressed concrete T-girders in order to study their effects under flexural loads. Round straight high strength steel fibers were used at volume fraction of 2%. The girders were cast using 150~190 MPa steel fiber reinforced UHPC and were designed to assess the ability of steel fiber reinforced UHPC to carry flexural loads in prestressed girders. The experimental results show that steel fiber reinforced UHPC enhances the cracking behavior and ductility of beams. Moreover, when ultimate failure did occur, the failure of girders composed of steel fiber reinforced UHPC was observed to be precipitated by the pullout of steel fibers that were bridging tension cracks in the concrete. Flexural failure of girders occurred when the UHPC at a particular cross section began to lose tensile capacity due to steel fiber pullout. In addition, it was determined that the level of prestressing force influenced the ultimate load capacity.

Moment-Curvature Analysis of Steel Fiber-Reinforced Ultra High Performance Concrete Beams with Tension Softening Behavior (인장연화거동을 고려한 강섬유 보강 초고성능 콘크리트 보의 모멘트-곡률 해석)

  • Yang, In-Hwan;Joh, Chang-Bin;Kim, Byung-Suk
    • Journal of the Computational Structural Engineering Institute of Korea
    • /
    • v.24 no.3
    • /
    • pp.237-248
    • /
    • 2011
  • Tensile softening characteristics play an important role in the structural behavior of steel fiber-reinforced ultra high performance concrete. Tension softening modeling and numerical analysis method are necessary for the prediction of structural performance of steel fiber-reinforced concrete. The numerical method to predict the flexural behavior is proposed in this study. Tension softening modeling is carried out by using crack equation based on fictitious crack and inverse analysis in which load-crack opening displacement relationship is considered. Thereafter material modeling is performed considering tension softening. The comparison of moment-curvature curves of the numerical analysis results with the test results indicates a reasonable agreement. Therefore, the present numerical results prove that good prediction of flexural behavior of steel fiber-reinforced ultra high performance concrete beams can be achieved by employing the proposed method.

Fatigue Failure Characteristics of Steel Fiber Reinforced Concrete Considering Cumulative Damage (누적손상을 고려한 강섬유보강 콘크리트의 피로파괴 특성)

  • 김동호;홍창우;이주형;이봉학
    • Magazine of the Korean Society of Agricultural Engineers
    • /
    • v.44 no.2
    • /
    • pp.117-126
    • /
    • 2002
  • Concrete containing discontinuous discrete steel fiber in a normal concrete is called steel fiber reinforced concrete(SFRC). Tensile as well as flexural strengths of concrete could be substantially increased by introducing closely spaced fibers which delay the onset of tension cracks and increase the tension strength of cracks. However, many properties of SFRC have not been investigated, especially properties on repeated loadings. Thus, the purposes of this dissertation is to study the flexural fatigue characteristics of SFRC considering cumulative damage. A series of experimental tests such as compressive strength, splitting tensile strength, flexural strength, flexural fatigue, and two steps stress level fatigue were conducted to clarify the basic properties and fatigue-related properties of SFRC. The main experimental variables were steel fiber fraction (0, 0.4, 0.7, 1, 1.5%), aspect ratio (60, 83). The principal results obtained through this study are as follows: The results of flexural fatigue tests showed that the flexural fatigue life of SFRC is approxmately 65% of ultimate strength, while that of plain is less than 58%. Especially, the behavior of flexural fatigue life shows excellent performance at 1.0% of steel-fiber volume fraction. The cumulative damage test of high-low two stress levels is within the value of 0.6 ∼ 1.1, while that of low-high stress steps is within the value of 2.4 ∼ 4.0.

Effect of cover depth and rebar diameter on shrinkage behavior of ultra-high-performance fiber-reinforced concrete slabs

  • Yoo, Doo-Yeol;Kwon, Ki-Yeon;Yang, Jun-Mo;Yoon, Young-Soo
    • Structural Engineering and Mechanics
    • /
    • v.61 no.6
    • /
    • pp.711-719
    • /
    • 2017
  • This study investigates the effects of reinforcing bar diameter and cover depth on the shrinkage behavior of restrained ultra-high-performance fiber-reinforced concrete (UHPFRC) slabs. For this, twelve large-sized UHPFRC slabs with three different rebar diameters ($d_b=9.5$, 15.9, and 22.2 mm) and four different cover depths (h=5, 10, 20, and 30 mm) were fabricated. In addition, a large-sized UHPFRC slab without steel rebar was fabricated for evaluating degree of restraint. Test results revealed that the uses of steel rebar with a large diameter, leading to a larger reinforcement ratio, and a low cover depth are unfavorable regarding the restrained shrinkage performance of UHPFRC slabs, since a larger rebar diameter and a lower cover depth result in a higher degree of restraint. The shrinkage strain near the exposed surface was high because of water evaporation. However, below a depth of 18 mm, the shrinkage strain was seldom influenced by the cover depth; this was because of the very dense microstructure of UHPFRC. Finally, owing to their superior tensile strength, all UHPFRC slabs with steel rebars tested in this study showed no shrinkage cracks until 30 days.

Investigations on the tensile strength of high-performance fiber reinforced concrete using statistical methods

  • Ramadoss, P.;Nagamani, K.
    • Computers and Concrete
    • /
    • v.3 no.6
    • /
    • pp.389-400
    • /
    • 2006
  • This paper presents the investigations towards developing a better understanding on the contribution of steel fibers on the tensile strength of high-performance fiber reinforced concrete (HPFRC). An extensive experimentation was carried out with w/cm ratios ranging from 0.25 to 0.40 and fiber content ranging from zero to 1.5 percent with an aspect ratio of 80. For 32 concrete mixes, flexural and splitting tensile strengths were determined at 28 days. The influence of fiber content in terms of fiber reinforcing index on the flexural and splitting tensile strengths of HPFRC is presented. Based on the test results, mathematical models were developed using statistical methods to predict 28-day flexural and splitting tensile strengths of HPFRC for a wide range of w/cm ratios. The expressions, being developed with strength ratios and not with absolute values of strengths and are applicable to wide range of w/cm ratio and different sizes/shapes of specimens. Relationship between flexural and splitting tensile strengths has been developed using regression analysis and absolute variation of strength values obtained was within 3.85 percent. To examine the validity of the proposed model, the experimental results of previous researchers were compared with the values predicted by the model.

Performance and modeling of high-performance steel fiber reinforced concrete under impact loads

  • Perumal, Ramadoss
    • Computers and Concrete
    • /
    • v.13 no.2
    • /
    • pp.255-270
    • /
    • 2014
  • Impact performance of high-performance concrete (HPC) and SFRC at 28-day and 56-day under the action of repeated dynamic loading was studied. Silica fume replacement at 10% and 15% by mass and crimped steel fiber ($V_f$ = 0.5%- 1.5%) with aspect ratios of 80 and 53 were used in the concrete mixes. Results indicated that addition of fibers in HPC can effectively restrain the initiation and propagation of cracks under stress, and enhance the impact strengths and toughness of HPC. Variation of fiber aspect ratio has minor effect on improvement in impact strength. Based on the experimental data, failure resistance prediction models were developed with correlation coefficient (R) = 0.96 and the estimated absolute variation is 1.82% and on validation, the integral absolute error (IAE) determined is 10.49%. On analyzing the data collected, linear relationship for the prediction of failure resistance with R= 0.99 was obtained. IAE value of 10.26% for the model indicates better the reliability of model. Multiple linear regression model was developed to predict the ultimate failure resistance with multiple R= 0.96 and absolute variation obtained is 4.9%.