• Title/Summary/Keyword: high performance cement

Search Result 540, Processing Time 0.022 seconds

An Experimental Study on the Evaluation of EMP Shielding Performance of Concrete Applied with ATMSM Using Zn-Al Alloy Wire (Zn-Al 합금 선재를 이용한 금속용사 공법 적용 콘크리트의 전자파 차폐 성능 평가에 관한 실험적 연구)

  • Choi, Hyun-Jun;Park, Jin-Ho;Min, Tae-Beom;Jang, Hyun-O;Lee, Han-Seung
    • Journal of the Korea Institute of Building Construction
    • /
    • v.19 no.3
    • /
    • pp.209-217
    • /
    • 2019
  • EMP (Electromagnetic Pulse) usually means High Power Electromagnetic Wave (HPEM). In the case of the shielding plate against the EMP, there is a possibility of deterioration of the electromagnetic wave shielding performance due to the skill of the constructor, bad construction, deformation of the shielding plate at the connection portion (joint portion). The inefficient use of space due to the separation distance is also pointed out as a problem. Therefore, this study aims to derive the optimum electromagnetic shielding condition by applying ATMSM to concrete as a part of securing electromagnetic wave shielding performance with reflection loss against concrete wall. Experimental parameters included concrete wall thickness and application of Zn-Al ATMSM. For the concrete wall, the wall thickness was 100 to 300mm, which is generally applied, and experimental parameters were set for the application of Zn-Al metal spraying method to evaluate electromagnetic shielding performance. Experimental results showed that as the thickness increases, the electromagnetic shielding performance increases due to the increase of absorption loss. In addition, after the application of Zn-Al ATMSM, the average shielding performance increased by 56.68 dB on average, which is considered to be increased by the reflection loss of the ATMSM. In addition, it is considered that the shielding performance will be better than that when the conductive mixed material and the ATMSM are simultaneously applied.

Evaluation of Flexural Performance of Eco-Friendly Inorganic Binding Material RC Beams Using Sodium Activator (나트륨계 알칼리 활성화제를 사용한 친환경 무기결합재 철근콘크리트 보의 휨성능 평가)

  • Ha, Gee-Joo;Kim, Jin-Hwan;Jang, Kie-Chang
    • Journal of the Korea Concrete Institute
    • /
    • v.25 no.3
    • /
    • pp.261-269
    • /
    • 2013
  • In this study, it was developed eco-friendly inorganic binding material concrete using ground granulated blast furnace slag and alkali activator (water glass, sodium hydroxides). Eight reinforced concrete beam using inoganic binding material concrete were constructed and tested under monotonic loading. The major variables were mixture ratio of alkali activator, type of admixture and admixture. Experimental programs were carried out to improve and evaluate the flexural performance of such test specimens, such as the load-displacement, the failure mode, the maximum load carrying capacity, and ductility capacity. All the specimens were modeled in scale-down size. The eco-friendly concrete using inorganic binding material encouraged alkali activation reaction was rapidly hardening speed and showed possibility as a high strength concrete. Also, the RC beams using new materials showed similar behavior and failed similarly with RC beam used portland cement. It is thought that eco-friendly inorganic binding material concrete can be used with construction material and product as a basic research to replace cement concrete. If there is application to structures in PC member as well as production of 2nd concrete product, it could be improved the productivity and reduction of construction duration etc.

Durability Performance Evaluations on Resistance to Chloride Attack for Concrete Using LCD Waste Glass Powder (LCD 폐유리 미분말을 사용한 콘크리트의 염해내구성 평가)

  • Kim, Seong-Kyum;Lee, Kwang-Woon;Song, Jae-Ho;Jang, Il-Young
    • Journal of the Korean Recycled Construction Resources Institute
    • /
    • v.6 no.4
    • /
    • pp.289-296
    • /
    • 2018
  • In this study, we evaluated the feasibility and performance of LCD waste glass as a replacement for cement by using LCD waste glass powder which is generated from manufacturing process due to development of LCD industry. Experiments were carried out by replacing 10% and 20% cement of LCD waste glass with particle size of $12{\mu}m$ of LCD waste glass with OPC and particle size of $5{\mu}m$, respectively. Through experiments, basic properties, mechanical properties and durability of concrete were evaluated. Experimental results show that the compressive strength is high at 10% replacement ratio compared to 20%. The lower the particle size, the higher the strength. The durability test evaluated the chloride penetration performance through the chloride ion diffusion coefficient. The higher the substitution rate and the smaller the particle size, the lower the chloride ion diffusion coefficient and the better the OPC than the all substitution rate. As a result, LCD waste glass concrete with low granularity and proper replacement ratio is considered to be advantageous for durability under salt environment.

A study on performance evaluation of fiber reinforced concrete using PET fiber reinforcement (PET 섬유 보강재를 사용한 섬유 보강 콘크리트의 성능 평가에 관한 연구)

  • Ri-On Oh;Yong-Sun Ryu;Chan-Gi Park;Sung-Ki Park
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.25 no.4
    • /
    • pp.261-283
    • /
    • 2023
  • This study aimed to review the performance stability of PET (Polyethylene terephthalate) fiber reinforcing materials among the synthetic fiber types for which the application of performance reinforcing materials to fiber-reinforced concrete is being reviewed by examining short-term and long-term performance changes. To this end, the residual performance was analyzed after exposing the PET fiber to an acid/alkali environment, and the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture by age were analyzed, and the surface of the PET fiber collected from the concrete specimen was examined using a scanning microscope (SEM). The changes in were analyzed. As a result of the acid/alkali environment exposure test of PET fiber, the strength retention rate was 83.4~96.4% in acidic environment and 42.4~97.9% in alkaline environment. It was confirmed that the strength retention rate of the fiber itself significantly decreased when exposed to high-temperature strong alkali conditions, and the strength retention rate increased in the finished yarn coated with epoxy. In the test results of the flexural strength and equivalent flexural strength of the PET fiber-reinforced concrete mixture, no reduction in flexural strength was found, and the equivalent flexural strength result also did not show any degradation in performance as a fiber reinforcement. Even in the SEM analysis results, no surface damage or cross-sectional change of the PET reinforcing fibers was observed. These results mean that no damage or cross-section reduction of PET reinforcing fibers occurs in cement concrete environments even when fiber-reinforced concrete is exposed to high temperatures in the early stage or depending on age, and the strength of PET fibers decreases in cement concrete environments. The impact is judged to be of no concern. As the flexural strength and equivalent flexural strength according to age were also stably expressed, it could be seen that performance degradation due to hydrolysis, which is a concern due to the use of PET fiber reinforcing materials, did not occur, and it was confirmed that stable residual strength retention characteristics were exhibited.

Autogeneous Shrinkage Characteristics of Ultra High Performance Concrete (초고성능 콘크리트의 자기수축 특성)

  • Kim, Sung-Wook;Choi, Sung;Lee, Kwang-Myong;Park, Jung-Jun
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.3
    • /
    • pp.295-301
    • /
    • 2011
  • Recently, the use of UHPC made of superplasticizers, silica fume, and steel fibers has been increasing worldwide. Although UHPC has a very high strength as well as an excellent durability performance due to its dense microstructures, earlyage cracks may occur due to the high heat of hydration and autogenous shrinkage caused by low W/B and high unit cement content. The early-age shrinkage cracking of UHPC can be controlled by using the shrinkage reducers and expansive admixtures having autogenous shrinkage compensation effect. In this paper, ultrasonic pulse velocity of UHPC containing shrinkage reducers and expansive agents was measured to predict its stiffness change. Also, the effect of shrinkage reducers and expansive agents on the autogenous shinkage of UHPC was investigated through the shrinkage test of UHPC specimens. Furthermore, the material coefficients of autogenous shrinkage prediction model were determined using the autogenous shrinkage values of UHPC with age. Consequently, the test results showed that, by adding shrinkage reducers and expansive agents, the stiffness of UHPC was rapidly developed at early-ages and the autogenous shrinkage was considerably reduced.

Effect of Aggregate on Mechanical Properties of Ultra-High Strength Concrete Exposed to High Temperature (고온을 받은 초고강도 콘크리트의 역학적 특성에 관한 골재의 영향)

  • Kim, Young-Sun;Choi, Hyoung-Gil;Ohmiya, Yoshifumi;Kim, Gyu-Yong
    • Journal of the Korea Concrete Institute
    • /
    • v.23 no.4
    • /
    • pp.431-440
    • /
    • 2011
  • Concrete structures exposed to fire produce changes in their internal structure, resulting in their service life reduction due to the deterioration of its strength and performance capacity. The deterioration level are dependent on the temperature, exposure time, concrete mix proportions, aggregate property, and material properties. This study was performed to evaluate the thermal behavior of ultra-high strength concrete for the parameters of water to cement ratio (compressive strength), fine to total aggregate ratio, and maximum coarse aggregate size. At room temperature and $500^{\circ}C$, tests of ultrasonic pulse velocity, resonance frequency, static modulus of elasticity, and compressive strength are performed using ${\varnothing}100{\times}200\;mm$ cylindrical concrete specimens. The results showed that the residual mechanical properties of ultra-high strength concrete heated to $500^{\circ}C$ is influenced by variation of a water to binder ratio, fine to total aggregate ratio, and maximum coarse aggregate size.

Experiment of Shear Behavior of Reinforced Concrete Beams with High Volume Fly Ash (하이 볼륨 플라이애쉬 철근콘크리트 보의 전단거동 실험)

  • Yoo, Sung-Won;Lee, Hyung-Jib
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.4
    • /
    • pp.525-532
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only, however, it is necessary to perform the research about structural shear behavior. Therefore, in this paper, 27 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35%, 50%, concrete compressive strength 20, 40, 60 MPa and 3 shear stirrups amounts. 27 test members were tested for shear behavior. From the test results, there were no differences between 35%, 50% high volume fly ash cement concrete and ordinary concrete without fly ash (FA=0%).

Experiment of Flexural Behavior of Reinforced Concrete Beams with High Volume Fly Ash (하이 볼륨 플라이애쉬 철근콘크리트 보의 휨거동 실험)

  • Yoo, Sung-Won;Lee, Hyung-Jib
    • Journal of the Korea Concrete Institute
    • /
    • v.26 no.3
    • /
    • pp.323-329
    • /
    • 2014
  • It is known that the best way to recycle fly ash is to use in concrete. It is impossible to bury in the ground this fly ash recently, so it is trying to use high volume fly ash concrete. Nevertheless, recent main research topics are focused in the part of material only, however, it is necessary to perform the researches about elasticity modulus, stress-strain relationship and structural behavior. Therefore, in this paper, 18 test members were manufactured with 3 test variables, namely fly ash replacement ratio 0, 35, 50%, concrete compressive strength 20, 40, 60 MPa and 2 tensile steel ratio. 18 test members were tested for flexural behavior. From the test results, there were no differences between 35, 50% high volume fly ash cement concrete and ordinary concrete without fly ash(FA=0%).

Studies on the Durable Characteristics of Self-Healing Concrete with High Water-Tightness for Artificial Ground (인공지반용 고수밀 기반 자기치유성 콘크리트의 내구특성에 관한 연구)

  • Song, Tae-Hyeob;Park, Ji-Sun;Kim, Byung-Yun
    • Journal of the Architectural Institute of Korea Structure & Construction
    • /
    • v.35 no.9
    • /
    • pp.199-206
    • /
    • 2019
  • Experimental study on the durability characteristics to examine the feasibility of concrete with high water-tightness and self-healing performance to minimize maintenance of concrete for artificial ground is as follows. 1) When blending agent, swelling agents, and curing accelerator were added on the ternary system cement with blast-furnace slag fine particles and fly ash to give a self-healing property, higher blending strengths by 82% at design standard strength of 24MPa and by 74% at design strength of 30MPa, respectively could be obtained. 2) The permeability test for the specimens having high water-tightness and no shrinkage showed that the permeability was reduced at maximum of 98%. However, the permeability was decreased as the design strength was increased, showing the reduction rate of 87% at the design strength of 50MPa. 3) The depth of carbonation of blast-furnace slag and fly ash was increased in all the specimens compared with those of OPC only. However, as the material age was increased, carbonation penetration depth was decreased compared with the reference blend. 4) Compared with the reference blending using only OPC, the freeze-thaw resistance was higher in the case of blending with 40% of blast-furnace slag and 10% of fly ash at the design standard strength of 50MPa. In addition, the freeze-thaw resistance in general was superior in the design standard strength of 50MPa with the lower water-binder ratio (W/B) as compared with the design standard strength of 24MPa and 30MPa with the high water-binder ratios.

Shrinkage Cracking Resistance of a Very High Performance Concrete for 2LCP in Accordance with the Polymer Powder Mixing Rate (폴리머 분말 혼입율에 따른 2층 포장용 고성능 콘크리트의 자기수축 특성)

  • Yun, ByeongRim;Yun, Kyongku;Lee, KyeRe;Han, SeungYeon
    • International Journal of Highway Engineering
    • /
    • v.20 no.2
    • /
    • pp.19-25
    • /
    • 2018
  • PURPOSES : This purpose of this study is to analyze the effect to autogenous shrinkage of the top-layer material of a two-lift concrete pavement mixing both silica fume and polymer powder. METHODS : The bottom-layer of a two-lift concrete pavement was paved with original portland cement (OPC) with a 20~23 cm thickness. Additionally, the top-layer which is directly exposed to the environment and vehicles was paved with a high-performance concrete (HPC) with a 7~10 cm thickness. These types of pavements can achieve a long service life by reducing joint damage and increasing the abrasion and scaling resistance. In order to integrate the different bottom and top layer materials, autogenous shrinkage tests were performed in this study according to the mixing ratio of silica fume and polymer powder, which are the admixture of the top-layer material. RESULTS : Autogenous shrinkage decreased when polymer powder was used in the mix. Contrary to this, autogenous shrinkage tended to rise with increasing silica fume content. However, the effects were not significant when small amounts of polymer powder were used (3% and 11%). CONCLUSIONS : The durability and compressive strength increase when silica fume is used in the mix. The flexural strength considerably increases and autogenous shrinkage of concrete decreases when polymer powder is used in the mix. As seen from above, the proper use of these materials improves not only durability, but also autogenous shrinkage, leading to better shrinkage crack control in the concrete.