• Title/Summary/Keyword: high order

Search Result 30,606, Processing Time 0.049 seconds

A Study of Numerical Method for Analysis of the 3-Dimensional Nonlinear Wave-Making Problems (3차원 비선형 조파문제 해석을 위한 수치해법 연구)

  • Ha, Y.R.;An, N.H.
    • Journal of Power System Engineering
    • /
    • v.16 no.5
    • /
    • pp.40-46
    • /
    • 2012
  • For free surface flow problem, a high-order spectral/boundary element method is adapted as an efficient numerical tool. This method is one of the most efficient numerical methods by which the nonlinear gravity waves can be simulated and hydrodynamic forces also can be calculated in time domain. In this method, the velocity potential is expressed as the sum of surface potential and body potential. Then, surface potential is solved by using the high-order spectral method and body potential is solved by using the high-order boundary element method. Using the combination of these two methods, the free surface flow problems of a submerged moving body are solved in time domain. In the present study, lifting surface theory is added to the former work to include effects of lift force. Therefore, a new formulation for the basic mathematical theory is introduced to contain the lift body in calculation.

Calculation method and application of natural frequency of integrated model considering track-beam-bearing-pier-pile cap-soil

  • Yulin Feng;Yaoyao Meng;Wenjie Guo;Lizhong Jiang;Wangbao Zhou
    • Steel and Composite Structures
    • /
    • v.49 no.1
    • /
    • pp.81-89
    • /
    • 2023
  • A simplified calculation method of natural vibration characteristics of high-speed railway multi-span bridge-longitudinal ballastless track system is proposed. The rail, track slab, base slab, main beam, bearing, pier, cap and pile foundation are taken into account, and the multi-span longitudinal ballastless track-beam-bearing-pier-cap-pile foundation integrated model (MBTIM) is established. The energy equation of each component of the MBTIM based on Timoshenko beam theory is constructed. Using the improved Fourier series, and the Rayleigh-Ritz method and Hamilton principle are combined to obtain the extremum of the total energy function. The simplified calculation formula of the natural vibration frequency of the MBTIM under the influence of vertical and longitudinal vibration is derived and verified by numerical methods. The influence law of the natural vibration frequency of the MBTIM is analyzed considering and not considering the participation of each component of the MBTIM, the damage of the track interlayer component and the stiffness change of each layer component. The results show that the error between the calculation results of the formula and the numerical method in this paper is less than 3%, which verifies the correctness of the method in this paper. The high-order frequency of the MBTIM is significantly affected considering the track, bridge pier, pile soil and pile cap, while considering the influence of pile cap on the low-order and high-order frequency of the MBTIM is large. The influence of component damage such as void beneath slab, mortar debonding and fastener failure on each order frequency of the MBTIM is basically the same, and the influence of component damage less than 10m on the first fourteen order frequency of the MBTIM is small. The bending stiffness of track slab and rail has no obvious influence on the natural frequency of the MBTIM, and the bending stiffness of main beam has influence on the natural frequency of the MBTIM. The bending stiffness of pier and base slab only has obvious influence on the high-order frequency of the MBTIM. The natural vibration characteristics of the MBTIM play an important guiding role in the safety analysis of high-speed train running, the damage detection of track-bridge structure and the seismic design of railway bridge.

Analytical, numerical and experimental investigation of low velocity impact response of laminated composite sandwich plates using extended high order sandwich panel theory

  • Salami, Sattar Jedari;Dariushi, Soheil
    • Structural Engineering and Mechanics
    • /
    • v.68 no.3
    • /
    • pp.325-334
    • /
    • 2018
  • The Nonlinear dynamic response of a sandwich plate subjected to the low velocity impact is theoretically and experimentally investigated. The Hertz law between the impactor and the plate is taken into account. Using the Extended High Order Sandwich Panel Theory (EHSAPT) and the Ritz energy method, the governing equations are derived. The skins follow the Third order shear deformation theory (TSDT) that has hitherto not reported in conventional EHSAPT. Besides, the three dimensional elasticity is used for the core. The nonlinear Von Karman relations for strains of skins and the core are adopted. Time domain solution of such equations is extracted by means of the well-known fourth-order Runge-Kutta method. The effects of core-to-skin thickness ratio, initial velocity of the impactor, the impactor mass and position of the impactor are studied in detail. It is found that these parameters play significant role in the impact force and dynamic response of the sandwich plate. Finally, some low velocity impact tests have been carried out by Drop Hammer Testing Machine. The results are compared with experimental data acquired by impact testing on sandwich plates as well as the results of finite element simulation.

Numerical Analysis of the Three-Dimensional Wake Flow and Acoustic Field around a Circular Cylinder

  • Kim, Tae-Su;Kim, Jae-Soo
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.11 no.4
    • /
    • pp.319-325
    • /
    • 2010
  • For decades, researchers have rigorously studied the characteristics of flow traveling around blunt objects in order to gain greater understanding of the flow around aircraft, vehicles or vessels. Many different types of flow exist, such as boundary layer flow, flow separation, laminar and turbulent flow, vortex and vortex shedding; such types are especially observed around circular cylinders. Vortex shedding around a circular cylinder exhibits a two-dimensional flow structure possessing a Reynolds number within the range of 47 and 180. As the Reynolds number increases, the Karman vortex changes into a three-dimensional flow structure. In this paper, a numerical analysis was performed examining the flow and aero-acoustic field characteristics around a circular cylinder using an optimized high-order compact scheme, which is a high order scheme. The analysis was conducted with a Reynolds number ranging between 300 and 1,000, which belongs to B-mode flow around a circular cylinder. For a B-mode Reynolds number, a proper spanwise length is analyzed in order to obtain the characteristics of three-dimensional flow. The numerical results of the Strouhal number as well as the lift and drag coefficients according to Reynolds numbers are coincident with the other experimental results. Basic research has been conducted studying the effects an unstable three-dimensional wake flow on an aero-acoustic field.

Assumed strain quadrilateral C0 laminated plate element based on third-order shear deformation theory

  • Shi, G.;Lam, K.Y.;Tay, T.E.;Reddy, J.N.
    • Structural Engineering and Mechanics
    • /
    • v.8 no.6
    • /
    • pp.623-637
    • /
    • 1999
  • This paper presents a four-noded quadrilateral $C^0$ strain plate element for the analysis of thick laminated composite plates. The element formulation is based on: 1) the third-order shear deformation theory; 2) assumed strain element formulation; and 3) interrelated edge displacements and rotations along element boundaries. Unlike the existing displacement-type composite plate elements based on the third-order theory, which rely on the $C^1$-continuity formulation, the present plate element is of $C^0$-continuity, and its element stiffness matrix is evaluated explicitly. Because of the third-order expansion of the in-plane displacements through the thickness, the resulting theory and hence elements do not need shear correction factors. The explicit element stiffness matrix makes the present element more computationally efficient than the composite plate elements using numerical integration for the analysis of thick layered composite plates.

A Study on the High-Order Spectral Model Capability to Simulate a Fully Developed Nonlinear Sea States

  • Young Jun Kim;Hyung Min Baek;Young Jun Yang;Eun Soo Kim;Young-Myung Choi
    • Journal of Ocean Engineering and Technology
    • /
    • v.37 no.1
    • /
    • pp.20-30
    • /
    • 2023
  • Modeling a nonlinear ocean wave is one of the primary concerns in ocean engineering and naval architecture to perform an accurate numerical study of wave-structure interactions. The high-order spectral (HOS) method, which can simulate nonlinear waves accurately and efficiently, was investigated to see its capability for nonlinear wave generation. An open-source (distributed under the terms of GPLv3) project named "HOS-ocean" was used in the present study. A parametric study on the "HOS-ocean" was performed with three-hour simulations of long-crested ocean waves. The considered sea conditions ranged from sea state 3 to sea state 7. One hundred simulations with fixed computational parameters but different random seeds were conducted to obtain representative results. The influences of HOS computational parameters were investigated using spectral analysis and the distribution of wave crests. The probability distributions of the wave crest were compared with the Rayleigh (first-order), Forristall (second-order), and Huang (empirical formula) distributions. The results verified that the HOS method could simulate the nonlinearity of ocean waves. A set of HOS computational parameters was suggested for the long-crested irregular wave simulation in sea states 3 to 7.

VARIOUS PROPERTIES OF HIGH-ORDER (p, q)-POLY-TANGENT POLYNOMIALS AND THE PHENOMENA OF THEIR ROOTS

  • JUNG YOOG KANG
    • Journal of applied mathematics & informatics
    • /
    • v.42 no.2
    • /
    • pp.457-469
    • /
    • 2024
  • In this paper, we construct higher-order (p, q)-poly-tangent numbers and polynomials and give several properties, including addition formula and multiplication formula. Finally, we explore the distribution of roots of higher-order (p, q)-poly-tangent polynomials.

SHARED VALUES AND BOREL EXCEPTIONAL VALUES FOR HIGH ORDER DIFFERENCE OPERATORS

  • Liao, Liangwen;Zhang, Jie
    • Bulletin of the Korean Mathematical Society
    • /
    • v.53 no.1
    • /
    • pp.49-60
    • /
    • 2016
  • In this paper, we investigate the high order difference counterpart of $Br{\ddot{u}}ck^{\prime}s$ conjecture, and we prove one result that for a transcendental entire function f of finite order, which has a Borel exceptional function a whose order is less than one, if ${\Delta}^nf$ and f share one small function d other than a CM, then f must be form of $f(z)=a+ce^{{\beta}z}$, where c and ${\beta}$ are two nonzero constants such that $\frac{d-{\Delta}^na}{d-a}=(e^{\beta}-1)^n$. This result extends Chen's result from the case of ${\sigma}(d)$ < 1 to the general case of ${\sigma}(d)$ < ${\sigma}(f)$.

NUMERICAL SOLUTIONS FOR SPACE FRACTIONAL DISPERSION EQUATIONS WITH NONLINEAR SOURCE TERMS

  • Choi, Hong-Won;Chung, Sang-Kwon;Lee, Yoon-Ju
    • Bulletin of the Korean Mathematical Society
    • /
    • v.47 no.6
    • /
    • pp.1225-1234
    • /
    • 2010
  • Numerical solutions for the fractional differential dispersion equations with nonlinear forcing terms are considered. The backward Euler finite difference scheme is applied in order to obtain numerical solutions for the equation. Existence and stability of the approximate solutions are carried out by using the right shifted Grunwald formula for the fractional derivative term in the spatial direction. Error estimate of order $O({\Delta}x+{\Delta}t)$ is obtained in the discrete $L_2$ norm. The method is applied to a linear fractional dispersion equations in order to see the theoretical order of convergence. Numerical results for a nonlinear problem show that the numerical solution approach the solution of classical diffusion equation as fractional order approaches 2.

Development of Optimized Compact Finite Difference Schemes (최적화된 집적 유한 차분법을 위한 내재적 시간전진 기법의 개발)

  • Park N. S.;Kim J. W.;Lee D. J.
    • 한국전산유체공학회:학술대회논문집
    • /
    • 1998.11a
    • /
    • pp.7-12
    • /
    • 1998
  • Optimized high-order compact(OHOC) schemes were proposed, which have high spatial order of truncation and resolution to simulate the aeroacoustic problems due to unsteady compressible flows. Generally, numerical schemes are categorized explicit or implicit by time-marching method. In this research, OHOC differences which were developed with explicit time-marching method is used to have implicit formulation and the implicit OHOC differences result in block hepta-diagonal matrix. This paper presents the comparisons between the explicit and implicit OHOC schemes with a second order accuracy of time in the 1-d linear wave convection problem, and between the explicit OHOC scheme of 4th-order accuracy in time and the implicit OHOC scheme of 1st-order accuracy in tine for the 1-d nonlinear wave convection problem. With these comparisons, the characteristics of implicit OHOC scheme are shown in the point of CFL number.

  • PDF