
Bull. Korean Math. Soc. 53 (2016), No. 1, pp. 49–60
http://dx.doi.org/10.4134/BKMS.2016.53.1.049

SHARED VALUES AND BOREL EXCEPTIONAL VALUES

FOR HIGH ORDER DIFFERENCE OPERATORS

Liangwen Liao and Jie Zhang

Abstract. In this paper, we investigate the high order difference coun-
terpart of Brück’s conjecture, and we prove one result that for a tran-
scendental entire function f of finite order, which has a Borel exceptional
function a whose order is less than one, if ∆nf and f share one small
function d other than a CM, then f must be form of f(z) = a + ceβz,

where c and β are two nonzero constants such that d−∆na
d−a

= (eβ − 1)
n
.

This result extends Chen’s result from the case of σ(d) < 1 to the general
case of σ(d) < σ(f).

1. Introduction and main results

In this paper, a meromorphic function always means it is meromorphic in
the whole complex plane C. We assume that the reader is familiar with the
standard notations in the Nevanlinna theory. We use the following standard
notations in value distribution theory (see [8, 14, 15]):

T (r, f), m(r, f), N(r, f), N(r, f), . . . .

And we denote by S(r, f) any quantity satisfying

S(r, f) = o{T (r, f)} as r → ∞,

possibly outside of a set E with finite linear or logarithmic measure, not nec-
essarily the same at each occurrence. A meromorphic function a(z) is said to
be a small function with respect to f(z) if and only if T (r, a) = S(r, f). We
use λ(f) and σ(f) to denote the exponent of convergence of zeros of f and the
order of f respectively.

We say that two meromorphic functions f(z) and g(z) share the value a IM
(ignoring multiplicities) if f(z)−a and g(z)−a have the same zeros. If f(z)−a
and g(z)−a have the same zeros with the same multiplicities, then we say that
they share the value a CM (counting multiplicities). Classic Nevanlinna four
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values theorem says that if two nonconstant meromorphic functions f and g
share four values CM, then f ≡ g or f is a Möbius transformation of g. The
condition “4 CM” has been weakened to “2 CM+2 IM” by Gundersen [10], as
well as by Mues [13]. But whether the condition can be weakened to “1 CM+3
IM” is still an open question.

We define the difference operators

∆ηf = f(z + η)− f(z), i.e., ∆f = f(z + 1)− f(z)

and

∆n
ηf = ∆n−1

η (∆ηf), i.e., ∆nf = ∆n−1(∆f).

Moreover, we see

∆nf =

n∑

j=0

Cj
n(−1)n−jf(z + j)

by mathematical induction.
In 1996, R. Brück [1] studied the uniqueness theory about some entire func-

tions sharing one value with their derivatives and posed the following interesting
and famous conjecture.

Conjecture. Let f(z) be non-constant entire function satisfying

σ2(f) = lim sup
r→∞

log logT (r, f)

log r

is neither infinity nor a positive integer. If f(z) and f ′(z) share one finite value
a CM, then

f ′ − a

f − a
= c

holds for some constant c 6= 0.

This conjecture has been verified in the special cases when a = 0 [1], or when
f is of finite order [12], or when σ2(f) <

1
2 [4]. It is well known that ∆f can be

regarded as the difference counterpart of f ′. Recently, many authors started to
consider the complex difference equations and the uniqueness of meromorphic
functions sharing values with their difference operators or shifts. For example,
the authors in [3] considered the problem that ∆n

ηf and f sharing one function
b CM and proved the following theorem.

Theorem A ([3]). Let f(z) be a finite order transcendental entire function

such that λ(f(z)− a(z)) < σ(f), where a(z) is an entire function and satisfies

σ(a) < 1, let n be a positive integer. If ∆n
ηf(z) and f(z) share an entire

function b(z) (b(z) 6≡ a(z) and σ(b) < 1) CM, where η(∈ C) satisfies ∆n
ηf(z) 6≡

0, then

f(z) = a(z) + cec1z,

where c, c1 are two nonzero constants.
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Remark 1.1. In Theorem A, it is easy to see that if ∆n
ηf(z) ≡ 0 holds, then

∆n
ηf and f(z) can not share the function b (b 6≡ a) CM by a simple discussion.

So we can remove the assumption ∆n
ηf(z) 6≡ 0. In addition, we also can find

out the exact solution of the equation above by a simple calculation, that is

f(z) = a(z) + ceβz,

where c, β are some nonzero constants satisfying
b−∆n

η
a

b−a = (eβ − 1)n.

Heittokangas et al. [9] considered the uniqueness of meromorphic functions
sharing values with their shifts and proved the following theorem.

Theorem B ([9]). Let f be a meromorphic function with σ(f) < 2, and let

c ∈ C. If f(z) and f(z + c) share the values a ∈ C and ∞ CM, then

f(z + c)− a

f(z)− a
= τ

holds for some constant τ .

In the same paper, they also given the example f(z) = ez
2

+1, which showed
that the condition σ(f) < 2 can not be relaxed to σ(f) ≤ 2. Without loss of
generality, we just need to consider the case ∆f (η, c = 1). Using the same
restrictive condition σ(f) < 2 in Theorem B, we once proved one result as
follows.

Theorem C ([16]). Let f(z) be a transcendental entire function such that

σ(f) < 2, and α(z) 6≡ 0 be an entire function such that σ(α) < σ(f) and

λ(f − α) < σ(f). If ∆nf − α(z) and f(z)− α(z) share 0 CM, then α(z) is a

polynomial with degree at most n− 1 and f must be form of

f(z) = α(z) +H(z)edz,

where H(z) is a polynomial such that cH(z) = −α(z), and c, d are two nonzero

constants such that ed = 1.

In Theorem C, we are still not sure whether the condition σ(f) < 2 is nec-
essary or not, and also fail to deal with the general case of ∆nf and f sharing
some functions other than α. The main purpose of this article is utilizing
complex difference equation to prove the high order difference counterpart of
Brück’s conjecture. We prove the following main theorem, which extends The-
orem A from the case of σ(b) < 1 to the general case of small function such
that σ(b) < σ(f).

Theorem 1.2. Let f(z) be a transcendental entire function of finite order,

which has a Borel exceptional small function a(z) whose order is less than 1.
If ∆nf and f(z) share one function d(z) (d(z) 6≡ a(z)) such that σ(d) < σ(f)
CM, then

∆nf − d

f − d
=

d−∆na

d− a
.
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Furthermore f is form of

f(z) = a(z) + ceβz,

where c and β are two nonzero constants such that
d(z)−∆na
d(z)−a(z) = (eβ − 1)

n
.

2. Some lemmas

To prove our results, we need some lemmas as follows.

Lemma 2.1 (see [14]). Let f(z) be a nonconstant meromorphic function in

the complex plane and

R(f) =
p(f)

q(f)
,

where p(f) =
∑p

k=0 akf
k and q(f) =

∑q
j=0 bjf

j are two mutually prime poly-

nomials in f . If the coefficients ak(k = 0, 1, . . . , p), bj(j = 0, 1, . . . , q) are small

functions of f(z) and ap(z) 6≡ 0, bq(z) 6≡ 0, then

T
(
r, R(f)

)
= max{p, q}T (r, f) + S(r, f).

Lemma 2.2 (see [14]). Suppose that f1(z), f2(z), . . . , fn(z) (n ≥ 2) are mero-

morphic functions and g1(z), g2(z), . . . , gn(z) are entire functions satisfying the

following conditions:

(i)
∑n

j=1 fj(z)e
gj(z) ≡ 0;

(ii) gj(z)− gk(z) are not constants for 1 ≤ j < k ≤ n;
(iii) For 1 ≤ j ≤ n, 1 ≤ h < k ≤ n, T (r, fj) = o{T (r, egh−gk)} (r → ∞, r 6∈

E).

Then fj(z) ≡ 0 (j = 1, 2, . . . , n).

Lemma 2.3 (see [5]). Let f(z) be a transcendental meromorphic function with

finite order σ. Then for each ε > 0, we have

m
(
r,
f(z + c)

f(z)

)
= O(rσ−1+ε).

Lemma 2.4 (see [5]). Let f(z) be a transcendental meromorphic function with

finite order σ and η be a nonzero complex number. Then for each ε > 0, we
have

T (r, f(z + η)) = T (r, f) +O(rσ−1+ε) + O(log r),

i.e., T (r, f(z + η)) = T (r, f) + S(r, f).

Lemma 2.5 (see [11]). Let w(z) be a transcendental meromorphic function

with σ(f) < ∞. Let Γ = {(k1, j1), . . . , (km, jm)} be a finite set of distinct pairs

of integers satisfying ki > ji ≥ 0 for i = 1, 2, . . . ,m. Also let ε > 0 be a

given constant, then there exists a set E ⊂ (1,+∞) that has finite logarithmic

measure, such that for all z satisfying |z| 6∈ E ∪ [0, 1] and for all (k, j) ∈ Γ, one
has

|w
(k)

w(j)
| ≤ |z|(k−j)(σ−1+ε).



SHARED VALUES FOR HIGH ORDER DIFFERENCE OPERATORS 53

Lemma 2.6 (see [6]). Let f(z) be a nonconstant meromorphic function of order

σ(f) < ∞, and let λ′ and λ′′ be, respectively, the exponent of convergence of

the zeros and poles of f(z). Then for any given ε > 0, there exists a set

E ⊂ (1,+∞) of |z| = r of finite logarithmic measure, so that

(1) 2πinz,η + log
f(z + η)

f(z)
= η

f ′(z)

f(z)
+O(rβ+ε),

or equivalently,

(2)
f(z + η)

f(z)
= eη

f
′(z)

f(z)
+O(rβ+ε),

holds for r 6∈ E ∪ [0, 1], where nz,η in (1) is an integer depending on both z and

η, β = max {σ − 2, 2λ− 2} if λ < 1 and β = max {σ − 2, λ− 1} if λ ≥ 1, and
λ = max {λ′, λ′′}.
Lemma 2.7 (see [2]). Let g be a transcendental function of order less than 1
and h be a positive constant. Then there exists an ε set Eε such that

g′(z + η)

g(z + η)
→ 0,

g(z + η)

g(z)
→ 1 as z → ∞ in C\Eε

uniformly in η for |η| ≤ h. Further, the set Eε may be chosen so that for large

|z| 6∈ Eε, the function g has no zeroes or poles in |ζ − z| ≤ h.

Remark 2.8. According to Hayman [7], an ε set is defined to be a countable
union of open discs not containing the origin and subtending angles at the
origin whose sum is finite. Suppose Eε is an ε set, then the set of r ≥ 1 for
which the circle S(0, r) meets Eε has finite logarithmic measure and for almost
all real θ the intersection of Eε with the ray arg z = θ is bounded.

3. The proof of main theorem

Proof of Theorem 1.2. On the one hand, from our assumption that a(z) is a
small Borel exceptional function of f , there exist an entire function H(z), which
is from the canonical product of the zeros of f(z) − a(z), and a nonconstant
polynomial h(z) such that

(3) f(z)− a(z) = H(z)eh(z),

where
σ(H) = λ(H) = λ(f − a) < k := σ(f) = deg h(z).

And then we see that f is of regular growth.
On the other hand, since ∆nf and f(z) share the small function d(z) CM,

then there exists a polynomial α(z) with degree l not greater than k such that

(4)
∆nf − d(z)

f − d(z)
= eα(z).

Set
H1 = H(z + 1)e∆h −H, . . . ,Hn = Hn−1(z + 1)e∆h −Hn−1
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by recurrence relations. It follows Lemma 2.4 and the fact deg∆h = k− 1 that

σ(Hj) < k, i.e., T (r,Hj) = o(T (r, ez
k

)) for j = 1, 2, . . . , n.

From the combination of equations (3)-(4) and the definition of Hn above, we
can obtain

(5) Hne
h = (d−∆na) + (a− d)eα +Heα+h.

If d ≡ 0, then from equation (4) and Lemma 2.3, we obtain that

m(r, eα) = m
(
r,
∆f

f

)
= m

(
r,

n∑

j=0

Cj
n(−1)n−j f(z + j)

f(z)

)
= O(rk−1+ε)

holds for any ε > 0. That is to say l ≤ k−1 because ε can be set small enough.
But from equation (5), we see

(Hn −Heα)eh = aeα −∆na,

which leads to

Hn −Heα = 0

and

aeα −∆na = 0.

Recall σ(a) < 1, if a 6≡ 0, then by Lemma 2.7, we see

(6) eα =
∆na

a
=

n∑

j=0

Cj
n(−1)n−j a(z + j)

a(z)
→

n∑

j=0

Cj
n(−1)n−j = 0

as r → ∞, r 6∈ Eε, which is impossible. That is to say a ≡ 0, which contradicts
our assumption a 6≡ d. So we can assume d 6≡ 0.
Set

h(z) = akz
k + · · ·+ a0 and α(z) = blz

l + · · ·+ b0

respectively, where ak(6= 0), . . . , a0 and bl(6= 0), . . . , b0 are some constants. In
the next section, in order to our discussion, we shall consider the following two
cases: 1. l = k and 2. l < k separately.

Case 1. l = k. In this case, we shall divide our proof into three subcases: 1.1
ak = bk, 1.2 ak = −bk and 1.3 ak 6= ±bk respectively.

Subcase 1.1. ak = bk. We rewrite equation (5) as the following form

(7) HeA1e2akz
k

= Hne
A2eakz

k − (d−∆na)− (a− d)eA3eakz
k

,

where A1, A2, A3 are some polynomials with degree at most k − 1. Then




T (r,HeA1) = o(T (r, eakz
k

)),

T (r,Hne
A2) = o(T (r, eakz

k

)),

T (r, eA3) = o(T (r, eakz
k

)),

T (r, d−∆na) = o(T (r, eakz
k

)).
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Applying Lemma 2.1 to (7), we see

2T (r, eakz
k

) = T (r, eakz
k

) + S(r, eakz
k

),

which is impossible.

Subcase 1.2. ak = −bk. We rewrite equation (5) as the following form

(8) Hne
B1e2akz

k

= (d−∆na+HeB2)eakz
k

+ (a− d)eB3 ,

where B1, B2, B3 are some polynomials with degree at most k − 1. Then




T (r,Hne
B1) = o(T (r, eakz

k

)),

T (r, d−∆na+HeB2) = o(T (r, eakz
k

)),

T (r, (a− d)eB3) = o(T (r, eakz
k

)).

If Hn 6≡ 0, then applying Lemma 2.1 to equation (8), we also see

2T (r, eakz
k

) ≤ T (r, eakz
k

) + S(r, eakz
k

),

which is impossible.
If Hn ≡ 0, then

(d−∆na+HeB2)eakz
k

+ (a− d)eB3 = 0.

It means
a− d = 0

and
d−∆na+HeB2 = 0,

which is a contradiction to our assumption a 6≡ d.

Subcase 1.3. ak 6= ±bk. Applying Lemma 2.2 to (5), we see

Hn = d−∆na = a− d = H = 0,

which is impossible.

Case 2. l < k. We rewrite equation (5) as the following form

(9) (Hn −Heα)eh = (d−∆na) + (a− d)eα,

which leads to
Hn −Heα = 0

and
d−∆na+ (a− d)eα = 0

in a similar way. So

K := eα =
Hn

H
=

d−∆na

d− a
.

Substitution the equation above into equation (4) yields

(10) (d− a)(∆nf −∆na) = (f − a)(d−∆na).

Set
g(z) := f(z)− a(z) = Heh,
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and then equation (10) becomes

(11)
∆ng

g
= K.

We also shall consider two subcases: 2.1 k ≥ 2 and 2.2 k = 1 in this case
respectively as follows.

Subcase 2.1. k ≥ 2. Employing the definition of g, it turns out that

σ(g) = k ≥ 2 and λ(g) = σ(H) < k.

By applying Lemma 2.6 to g, for any given ε > 0, there exists a set E with
finite logarithmic measure such that

(12)
g(z + j)

g(z)
= ej

g
′(z)
g(z)

+O(rβ+ε),

as r → ∞, and r 6∈ E ∪ [0, 1], where

β =

{
k − 2, if σ(H) < 1;

max {k − 2, σ(H)− 1}, if σ(H) ≥ 1.

Combining the fact σ(H) < k and the equation above, we get β < k − 1. But
the definition of g gives

g′(z)

g(z)
= h′(z) +

H ′(z)

H(z)
.

From Lemma 2.5, we see

|H
′

H
| ≤ |z|σ(H)−1+ε, r 6∈ E ∪ [0, 1]

holds for any given ε > 0. That is to say:

(13) |H
′

H
| = o(rk−1), r 6∈ E ∪ [0, 1]

by taking ε small enough. Thus the combination of (12) and (13) gives:

(14)
g(z + j)

g(z)
= ejakz

k−1(1+o(1)) as r → ∞, r 6∈ E ∪ [0, 1].

It follows equations (11) and (14) that

(15) eα =

n∑

j=0

Cj
n(−1)n−j g(z + j)

g(z)
=

n∑

j=0

Cj
n(−1)n−jejakz

k−1(1+o(1))

as r → ∞, r 6∈ E ∪ [0, 1], and then in this situation, we see enakz
k−1(1+o(1))

is the only maximal magnitude of module term in the right of equation (15)
by taking such z = reiθ that δ(θ) = cos((k − 1)θ + arg ak) > 0, which means
l = k − 1. Recall

(16) eα =
d−∆na

d− a
.



SHARED VALUES FOR HIGH ORDER DIFFERENCE OPERATORS 57

So σ(a) < 1 ≤ k − 1 ≤ σ(d).
If a − ∆na ≡ 0, then a ≡ 0 by the same discussion in equation (6) at the

beginning of proof, which leads to eα = 1 by equation (16), a contradiction to
l = k − 1. So we can assume a−∆na 6≡ 0. From equation (16), we see

N(r,
1

d− a
) ≤ N(r,

1

a−∆na
), i.e., λ(d− a) = lim sup

r→∞

logN(r, 1
d−a)

log r
< 1.

So we can set d− a = uev, where λ(u) = σ(u) = λ(d− a) < 1 ≤ deg v = k − 1,
and substitute it into equation (16), we see

eα − 1 = (
a−∆na

u
)e−v.

Thus eα has three Borel values 0, 1,∞, which is impossible.

Subcase 2.2. k = 1, i.e., σ(d) < 1. In this subcase, we can get our conclusion
from Theorem A immediately, and here, we give a simple proof in some sense.
Now equation (3) can be set as the following form

(17) f(z)− a = H(z)eβz,

where β is a nonzero constant and H is an entire function with order less than
1. Now we shall show H is a nonzero constant. Recall

Hj(z) = e∆hHj−1(z + 1)−Hj−1(z) = eβHj−1(z + 1)−Hj−1(z)

for j = 1, 2, . . . , n, and then

(18) ∆jg = Hj(z)e
βz, j = 1, 2, . . . , n.

From equation (11), we obtain

(19) K =
∆ng

g
=

n∑

j=0

Cj
n(−1)n−j g(z + j)

g(z)
=

n∑

j=0

Cj
n(−1)n−jH(z + j)

H(z)
ejβ .

By applying Lemma 2.7 to equation (19), we see

(20) K =

n∑

j=0

Cj
n(−1)n−jH(z + j)

H(z)
ejβ →

n∑

j=0

Cj
n(−1)n−jejβ

as z → ∞ in C\Eε, where Eε is an ε set. Then from equation (20), we can
obtain K = eα is a constant, i.e., α is a constant and

(21) K =

n∑

j=0

Cj
n(−1)n−jejβ = (eβ − 1)

n
.

From equations (11) and (18), we see Hn = KH . By substituting equation
(21) and Hn = KH into (19), we obtain

(22)
n∑

j=0

ejβCj
n(−1)n−j(H(z + j)−H(z)) = 0.
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Set

B(z) = ∆H(z),

then from Lemma 2.4, it is easy for us to see σ(B) ≤ σ(H) < 1. From the
definition of B(z), we can obtain

H(z + 1)−H(z) = B,
H(z + 2)−H(z) = ∆B + 2B,
H(z + 3)−H(z) = ∆2B + 3∆B + 3B,
. . .
H(z + j)−H(z) = ∆j−1B + · · ·+ jB,
. . . .

Here we just need to show that the last term in H(z+ j)−H(z) is jB, and we
prove it by mathematical induction. Firstly, suppose

(23) H(z + j)−H(z) = ∆j−1B + · · ·+ jB

has holden for s = j, then take difference operator of both sides of equation
(23) and we see

∆jB + · · ·+ j∆B

= ∆(H(z + j)−H(z))

= (H(z + j + 1)−H(z + 1))− (H(z + j)−H(z))

= (H(z + j + 1)−H(z))− (H(z + 1)−H(z))− (H(z + j)−H(z))

= (H(z + j + 1)−H(z))−B − (∆j−1B + · · ·+ jB).

Thus

H(z + j + 1)−H(z) = ∆jB + · · ·+ (j + 1)B

holds which means equation (23) still holds for s = j + 1. Therefore, we can
obtain the last term in H(z + j)−H(z) is jB by mathematical induction. By
substituting equation (23) into equation (22), we see

(24)
n∑

j=1

eβjCj
n(−1)n−j(∆j−1B + · · ·+ jB) = 0.

From equation (24), we can get

(25)

s∑

t=1

at∆
tB +

( n∑

j=1

eβjCj
n(−1)n−jj

)
B = 0,

where at(t = 1, 2, . . . , s) are some constants. If B(z) 6≡ 0, then from equation
(25), we can see

(26)
s∑

t=1

at
∆tB

B
+

n∑

j=1

eβjCj
n(−1)n−jj = 0.
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Since σ(B) < 1, then by applying Lemma 2.7 to ∆tB
B described in equation

(26), we can obtain

(27)
∆tB

B
=

t∑

j=0

Cj
t (−1)t−jB(z + j)

B
→

t∑

j=0

Cj
t (−1)t−j = (1− 1)t = 0

as z → ∞ in C\Eε, where Eε is an ε set. Thus from equations (26)-(27), we
see

(28)

n∑

j=1

eβjCj
n(−1)n−jj = −

s∑

t=1

at
∆tB

B
→ 0

as z → ∞ in C\Eε. Thus from equation (28), we see

n∑

j=1

eβjCj
n(−1)n−jj = 0.

That is
n∑

j=1

eβjnCj−1
n−1(−1)n−j = 0,

or equivalently
n∑

j=1

eβjCj−1
n−1(−1)n−j = 0,

which implies

eβ
n−1∑

s=0

esβCs
n−1(−1)n−s−1 = (eβ − 1)n−1eβ = 0.

Therefore, we get eβ = 1. From equation (21), we see K = 0, which is a
contradiction.

Therefore, B(z) ≡ 0, and then H(z + 1) = H(z). If H(z) is not a constant,
then from our assumption that H(z) is from the canonical product of the zeros
of f(z)− a, which means it has a zero z0 at least, we see z0 + 1, z0 + 2, . . . are
some zeros of H . Thus

n(r,
1

H(z)
) ≥ r(1 + o(1)),

which implies σ(H) ≥ 1. This is a contradiction. So H(z) is a nonzero constant
and f is form of

f(z) = a(z) + ceβz,

where c and β are two nonzero constants such that d−∆na
d−a = (eβ − 1)

n
. �
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