• Title/Summary/Keyword: high obstacle

Search Result 431, Processing Time 0.038 seconds

Obstacle Avoidance of Redundant Manipulator Using Potential and AMSI

  • Ikeda, K.;Minami, M.;Mae, Y.;Tanaka, H.
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.740-745
    • /
    • 2005
  • This study is intended to build a controller of redundant manipulators with the simultaneous abilities of trajectory tracking and obstacle avoidance without any preparations of path planning to achieve full automation even for one production of one kind, while keeping the avoidance ability high and keeping its shape away from object to reduce the possibility that the manipulator crashes to the object. To evaluate the avoidance ability of the intermediate link, we proposed a scalar value of Avoidance Manipulability Shape Index(AMSI), which is independent of the obstacle's shape. On the other hand, the danger to crash to the obstacle is depending on the shape of the obstacle, which could be evaluated by the potential field set around the obstacle. This paper proposes control method of the manipulator's shape based on the AMSI to simultaneously avoid obstacles and keep the avoidance ability high with potential.

  • PDF

The course estimation of vehicle using vanishing point and obstacle detection (무한원점을 이용한 주행방향 추정과 장애물 검출)

  • 정준익;최성구;노도환
    • Journal of the Korean Institute of Telematics and Electronics S
    • /
    • v.34S no.11
    • /
    • pp.126-137
    • /
    • 1997
  • This paper describes the algorithm which can estimate road following direction and deetect obstacle using a monocular vision system. This algorithm can estimate the course of vehicle using the vanishing point properties and detect obstacle by statistical method. The proposed algorithm is composed of four steps, which are lane prediction, lane extraction, road following parameter estimation and obstacle detection. It is designed for high processing speed and high accuracy. The former is achieved by a small area named sub-windown in lane existence area, the later is realized by using connected edge points of lane. We would like to present that the new mehod can detect obstacle using the simple statistical method. The paracticalities of the processing speed, the accuracy of the algorithm and proposing obstacle detection method, have been justified through the experiment applied VTR image of the real road to the algorithm.

  • PDF

A Study on the Construction of the Optimum Design Process of Medium Intensity LED Aviation Obstacle Light (중광도 LED항공장애등 등구의 최적설계프로세서 확립에 관한 연구)

  • Kim, Seong-Cheol;Jang, Jeong-Won
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.21 no.1
    • /
    • pp.35-43
    • /
    • 2008
  • Aviation obstacle lights including controller for the safe night aviation service have applied to high voltage transmission line of which height is from $60{\sim}180 m$, Fresnel lens made by Augustine Fresnel have been applied to light houses, These Fresnel lens were applied to aviation obstacle lights and have been universally used, It was reported that Fresnel lens for aviation obstacle light was used in the first place in Korea in 1987, LEDs have recently been applied to aviation obstacle lights, So, the optimum physical design is essential to the design of aviation obstacle light. In this study, optical and three dimensional modeling of LED module and globe lens were performed, And thermal analysis due to LED thermal source and service thermal condition in high voltage transmission line was performed and was analyzed comparing with experiments, The optimum design process of medium intensity LED aviation obstacle lights was constructed with three dimensional modeling, thermal analysis, and thermal experimental technique.

The Kinematic Patterns of Walking according to Obstacle's Height (장애물 높이에 따른 보행의 운동형상학적 변화에 대한 연구)

  • Chung, Hyung-Kuk
    • Journal of Korean Physical Therapy Science
    • /
    • v.15 no.3
    • /
    • pp.55-63
    • /
    • 2008
  • Background : The Purposes of this study were to understand difference between free walking and obstacle over walking through the naked eye and motion analysis device, and to review merits of obstacle walking training as item of functional assessment in clinical situations. Methods : All participants were male and performed 3 types of walking methods: free walking, obstacle over walking with low block(height=10cm, width=8cm), and obstacle over walking with high block(height=20cm, width=8cm). All walking were performed 3 trials respectively. Results : In the naked eye, initial contact with toes occurred more than heel strike in obstacle over walking, and the flexion angle of hip and knee were increased in obstacle over walking. On interpretations though motion analysis device, cadence, gait speed and weight accept were significant statistically(p<.05). Cadence and gait speed were decreased, and weight accept duration was increased in obstacle over walking. Rotation among three pelvic motions was significant statistically(p<.05), flexion among three hip motions was significant statistically(p<.05) and flexion among three ankle motions was significant statistically(p<.05). Rotation and flexion among three ankle motions was significant statistically(p<.05). Conclusion : Both the naked eye and interpretations of the device presented many difference between free walking and obstacle over walking. In overcrossing obstacles, many participants appeared walking strategy by perform initial contact with toes. Knee flexion was most significant statistically(p<.05) in obstacle over walking with 20cm block.

  • PDF

Development of FE Models of the Heavy Obstacle for the EU-TSI and Domestic Rolling Stock Safety Regulations and Application to Collision Evaluation of the Korean High-speed EMU (EU의 TSI 규정 및 국내 철도차량안전기준의 대형장애물 유한요소모델 개발과 분산형 고속열차의 충돌성능평가에 적용)

  • Kim, Geo-Young;Koo, Jeong-Seo
    • Journal of the Korean Society for Railway
    • /
    • v.14 no.4
    • /
    • pp.333-340
    • /
    • 2011
  • The purpose of this paper is to develop two kinds of finite element models for the heavy deformable obstacle defined in grade crossing collision scenario of the Europe TSI and the Korean rolling stock safety regulations and to apply the crashworthiness evaluation for the Korean high-speed EMU with the FE model. The numerical models of the heavy obstacle were changed from a past rigid one to a current deformable one whose stiffness requirement should be verified by a collision simulation defined in the regulations. Through several trial simulations, two types of numerical models for the heavy obstacle were developed, which satisfied physical properties specifies in the regulations. One is a solid-type obstacle with uniform density and the other is a shell-type. With the obstacles developed in this study, the grade crossing collision scenario for Korean high-speed EMU was simulated and evaluated for the two-type obstacle models. From the simulation results, the shell and solid-type obstacles showed quite different behaviors after collision, and the shell type model gave more severe results.

A study on the proceeding direction and obstacle detection by line edge extraction (직선 Edge 추출에 의한 주행방향 및 장애물 검출에 관한 연구)

  • 정준익;최성구;노도환
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10b
    • /
    • pp.97-100
    • /
    • 1996
  • In this paper, we describe an algorithm which estimate road following direction using the vanishing point property and obstacle detection. This method of detecting the lane markers in a set of continuous lane highway images using linear approximation is presented. This algorithm is designed for accurate and robust extraction of this data as well as high processing speed. Also, this algorithm reckon distance and chase about an obstacle. It include four algorithms which are lane prediction, lane extraction, road following parameter estimation and obstacle detection algorithm. High accuracy was proven by quantitative evaluation using simulated images. Both robustness and the practicality of real time video rate processing were then confirmed through experiment using VTR real road images.

  • PDF

Optimal Design of Overlapped Ultrasonic Sensor Ring for High Resolution Obstacle Detection (고분해능 장애물 탐지를 위한 중첩 초음파 센서 링의 최적 설계)

  • Kim, Sung-Bok;Kim, Hyun-Bin
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.17 no.2
    • /
    • pp.79-87
    • /
    • 2011
  • This paper presents the optimal design of an overlapped ultrasonic sensor ring for high resolution obstacle detection of an autonomous mobile robot. It is assumed that a set of low directivity ultrasonic sensors of the same type are arranged along a circle of nonzero radius at a regular spacing with their beams overlapped. First, taking into account the dead angle region, the entire range of obstacle detection is determined with reference to the center of an overlapped ultrasonic sensor ring. Second, the optimal design index of an overlapped ultrasonic sensor ring is defined as the area closeness of three sensing subzones resulting from beam overlap. Third, the lower and upper bounds on the number of ultrasonic sensors are derived, which can guarantee minimal beam overlap and also avoid excessive beam overlap among adjacent ultrasonic sensors. Fourth, employing a commercial low directivity ultrasonic sensor, an optimal design example of an overlapped ultrasonic sensor ring is given along with the ultrasonic sensor ring prototype mounted on top of a mobile robot. Finally, some experimental results using our prototype ultrasonic sensor ring are given to demonstrate the validity and performance of an optimally overlapped ultrasonic sensor ring for high resolution obstacle detection.

Real time obstacle avoidance for autonomous mobile robot (이동 로봇의 실시간 충돌회피)

  • 권영도;이진수
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1993.10a
    • /
    • pp.434-439
    • /
    • 1993
  • This paper present a sensor based obstacle avoidance method which is based on a VFH(Vector Field Histogram) method. The basic idea of obstacle avoidance is to find a minimum obstacle direction and distance. From the minimum sonar index and the target direction high level system determine steering angle of mobile robot. The sonar sensor system consists of 12 ultra sonic sensor, and each sensor have its direction and safety value. This method has advantage on calculation speed and small memory. This method is implemented on indoor autonomous vehicle'ALiVE-2'.

  • PDF

The Effect of Obstacle Height on Balance Control While Stepping Over an Obstacle From a Position of Quiet Stance in Older Adults (노인의 정적인 자세로부터 장애물 보행 시 장애물 높이의 변화가 평형감각에 미치는 효과)

  • Kim, Hyeong-Dong
    • The Journal of Korean Physical Therapy
    • /
    • v.21 no.3
    • /
    • pp.75-80
    • /
    • 2009
  • Purpose: The purpose of this study was to examine the effect of an obstacle height on the balance control of older adults while stepping over an obstacle from a position of quiet stance. Methods: Fifteen community-dwelling healthy older adults (mean age, $74.4\pm4.27$ yrs; age range, 67-82 yrs) volunteered to participate in this study. The subjects performed gait initiation (GI) and they stepped over obstacles of two different heights (10 cm and 18 cm) at a self-paced speed from a position of quiet stance. Their performance was assessed by recording the changes in the displacement of the COP in the anteroposterior (A-P) and mediolateral (M-L) directions using a force platform. Results: The M-L displacement of the COP significantly increased for an 18 cm obstacle height condition as compared to the GI and a 10 cm obstacle height condition (p<0.01). Furthermore, the M-L displacement of the COP for a 10 cm high obstacle was significantly greater for that for the GI (p<0.01). However, the mean of the A-P displacement of the COP was similar between the stepping conditions for the A-P displacement of the COP (p>0.05). Conclusion: This study suggests that the M-L COP displacement could be a better parameter to identify the dynamic balance control in older adults when negotiating obstacles.

  • PDF