• 제목/요약/키워드: high magnetic flux density

검색결과 240건 처리시간 0.024초

저온냉각공구의 절삭특성 변화 -모타 회전자의절삭특성- (On Cutting Characteristics Change of Low Temperature Cooling Tool -Cutting Characteristics of Cage Motor Rotor-)

  • 김순채
    • 한국공작기계학회:학술대회논문집
    • /
    • 한국공작기계학회 1995년도 추계학술대회 논문집
    • /
    • pp.37-43
    • /
    • 1995
  • The cutting process of cage motor rotor require high precision and good roughness, the surface roughness fo cutting face is very important factor with effect on the magnetic flux density of cage motor rotor. The paper describes a cause of decrease in the cutting force and roughness on low temperature cooling tool by means of analysis on the mechanism of force system at cutting condition and experimental findings. The main results as compared with the room temperature cutting are as follow : 1) The cutting resistance decreased due to low temperature cooling tool. 2) The surface roughness decreased due to low temperature cooling tool. 3) The low temperature cooling tool effected machinability of the cutting direction in machined surface. 4) The low temperature cooling decreased burr of corner in feed direction.

  • PDF

기둥형 결정립 구조를 지닌 $MgB_2$ 박막에서 자속고정 현상 (Flux Pinning in $MgB_2$ Film with Columnar Grains)

  • 김동호;김혜영;황태종;이상한;성원경;강원남
    • Progress in Superconductivity
    • /
    • 제9권2호
    • /
    • pp.173-176
    • /
    • 2008
  • [ $MgB_2$ ] films grown by hybrid physical chemical vapor deposition under appropriate growth conditions commonly exhibit columnar grain structure. The grain boundaries between adjacent columnar grains have been reported to be good flux pinning centers. In this work, we measured the angular dependence of critical current density ($J_c$) and observed the enhanced flux pinning when an external magnetic field was aligned parallel to the columnar direction. This $J_c$ was almost comparable to the $J_c$ for intrinsic pinning case up to 1 T at low temperatures, indicating that grain boundary pinning is very effective. At high fields, however, $J_c$ decreased rapidly resulting from the fact that the density of flux pinning centers provided by grain boundaries was outnumbered by the flux density.

  • PDF

자기연마기술을 이용한 고속절삭공구의 성능향상에 관한 연구 (A Study on the Improvement of Performance for High Speed Cutting Tool using Magnetic Fluid Polishing Technique)

  • 조종래;양순철;정윤교
    • 한국공작기계학회논문집
    • /
    • 제15권1호
    • /
    • pp.32-38
    • /
    • 2006
  • The magnetic fluid polishing technique can polish the tool of complex shape, because the polishing method which polishes as compress the workpiece by the magnetism abrasives to arrange to the linear according to the line of magnetic force. Therefore, we producted the magnetic fluid polishing device in order that mirror like finishing processes the tool surface. In order to a polishing condition selection, polishing characteristic was estimated by polishing conditions which are magnetic flux density, polishing speed, grain size, magnetic fluid. The tool was polished to the selected polishing condition. The result to evaluate the polished tool's performance with the cutting force and tool wear, the polished tool's performance was improved compared with the tool not to polish.

Design Optimization and Fabrication of an Advanced High Gradient Magnetic Separator

  • Park, E.B;Choi, S.D;Yang, C.J
    • Journal of Magnetics
    • /
    • 제5권2호
    • /
    • pp.59-64
    • /
    • 2000
  • A drum type of high gradient magnetic separator was designed and optimized by computer simulations. The magnetic separator consists of high performance rare earth $(Nd_2Fe_14B)$ permanent magnets and magnetic yokes of extremely low carbon steel interconnecting the permanent magnets. Magnetic circuits of the separator were simulated for the aim of the least cost, highest magnetic strength and most efficient function by using specialized S/W (Vector Field Program) employing the Finite Element Method. The magnetic flux density was provided to be strong enough to collect the invisible fine metal particles from the surface of hot rolled steel plate with the efficiency of almost 95%.

  • PDF

흡인력 저감과 추력밀도 향상을 위한 Double Type 횡자속 전동기에 대한 연구 (A Study of Double Type Transverse Flux Linear Motor for Improvement of Attraction force and Power Density)

  • 홍정표;장정환;강도현;김영중;이지영
    • 대한전기학회논문지:전기기기및에너지변환시스템부문B
    • /
    • 제54권3호
    • /
    • pp.120-126
    • /
    • 2005
  • This paper deals with a Double-type Transverse Flux Linear Motor which can be applied to high power system. This type can reduce overall system volume because it has a double flux path, and less number of phases and turns comparing with prototype for one phase. This machine is based on permanent magnet excitation, and the pole shape is designed to reduce attraction force between stator and mover poles. In the paper, the basic configuration of double type is introduced first, and the principle of movement is explained. After performing the characteristic analysis by 3-dimensional equivalent magnetic circuit network, the results are discussed.

와전류감쇠기의 동특성에 관한 연구 (A study on Dynamic Characteristics of an Eddy Current Damping)

  • 박정삼;배재성;황재혁;강국정
    • 항공우주시스템공학회지
    • /
    • 제2권3호
    • /
    • pp.24-28
    • /
    • 2008
  • Eddy current are induced when a nonmagnetic, conductive material is moving as the result of being subjected to the magnetic field, or if it is placed in a time-varying magnetic field. These currents circulate in the conductive material and are dissipated, causing a repulsive force between the magnet and conductor. Using this concept, eddy current damping can be used as a form of viscous damping. This paper investigated analytically and experimentally the characteristics of an eddy current damping when a permanent magnet is placed in a conductive tube. The theoretical model of the eddy current damping is developed from electromagnetics and is verified from Maxwell program and experiments. From these comparisons, although predictability is not accurate at high excitation frequencies, the present model can be used to predict damping force at low excitation frequencies. In order to improve the prediction of the characteristics of an eddy current damping, the induced magnetic flux densities have to be considered in following researches.

  • PDF

연자성 분말코어를 적용한 축방향 영구 자속형 전동기 설계 (Design of Axial Flux Permanent Magnetic Motor Using Soft Magnetic Composite Core)

  • 최명욱;양승진;문채주
    • 한국전자통신학회논문지
    • /
    • 제17권4호
    • /
    • pp.607-616
    • /
    • 2022
  • 본 논문에서는 전기 자동차 응용을 위해 연자성 분말 코어가 있는 새로운 축방향 자속 영구자석 모터를 제안한다. 권선 및 연자성 분말 코어는 매우 조밀한 구조를 형성하도록 설계할 수 있으므로 토크 밀도를 크게 향상시킨다. 우수한 자속 집중 능력을 얻기 위해 두 대의 토로이드형 내부 고정자형 모터가 설계 및 분석되었으며, 설계된 모터에는 고성능 전기자동차 애플리케이션 적용을 위해 네오디움 자석이 사용되었다. 3차원 유한 요소 방법은 전자기 매개변수 및 성능을 분석하는 데 사용되었으며, 성능 비교를 위해 상용 축방향 자속 영구자석 모터가 사용되었다. 제안된 모터는 기존 구동모터에 비해 약 5.8% 무게가 가벼워지고 약 8Nm 정도 높은 토크를 생성하였다.

대용량 무정전전원장치용 자성부품 설계 및 특성 분석 (Design and analysis of magnetic components for high power UPS system)

  • 이동주;이은웅;김용헌
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2004년도 하계학술대회 논문집 B
    • /
    • pp.980-982
    • /
    • 2004
  • The aim of the paper is to introduce the high power UPS with unity input power factor and to analyze the its major magnetic components. Inductance and flux density of 3 phases boost reactor is obtained by finite element method and compared with its expermental result. Also, basic characteristic of inverter transformer is inverstigated.

  • PDF

Conceptual design and fabrication test of the HTS magnets for a 500 W-class superconducting DC rotating machine under 77 K

  • Choi, J.;Kim, S.K.
    • 한국초전도ㆍ저온공학회논문지
    • /
    • 제23권4호
    • /
    • pp.35-38
    • /
    • 2021
  • Conventional direct current (DC) rotating machines are usually used for crane and press machine using high torque in metal and steel industries, because of a constant output power along variable rotating speed. A general DC motor with permanent field magnets could not increase a magnetic flux density at a gap between armature coils and field magnets. However, a superconducting DC motor has field magnets composed with high temperature superconducting (HTS) coils and it could increase the magnetic flux density at the gap to over 10 times than those of a general DC motor by control the excitation current into HTS coils. The superconducting DC motor could be operated with extremely high torque and constant output power at a low rotational speed. In this paper, a 500 W superconducting DC rotating machine was conceptually designed with a LN2 (Liquid Nitrogen) cooling method and the operation characteristics results of HTS field magnets were presented. The two no-insulation HTS magnets for a 500 W superconducting DC rotating machine were fabricated. The excitation current for the HTS magnets could be controlled from 0 to 40 A. This test results will be available to design large-sized HTS magnets for a number of hundred kW class superconducting DC rotating machine under LN2 cooling system.

3차원 등가자기회로망법을 이용한 초전도 전동기의 자속밀도 분포 해석 (Flux Density Analysis of Superconducting Motor Using 3D Equivalent Magnetic Circuit Network)

  • 이정종;진영우;김영균;조영식;홍정표
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 2002년도 하계학술대회 논문집 B
    • /
    • pp.773-775
    • /
    • 2002
  • This paper deals with 3 Dimensional(3D) analysis of magnetic flux density of High Temperature Superconducting(HTS) motor using 3D Equivalent Magnetic Circuit Network (EMCN). When the Finite Element Method (FEM) is applied to an analysis of 3D models, it takes much time to the pre-process work required for 3D modeling and to solve the differential equation. Compare with 3D FEM, the result of 3D EMCN by using the magnetic resistance and magnetomotive force is exact and rapid. The accuracy of 3D EMCN is verified by comparing the 3D EMCN analysis with that of 3D FEM in HTS motor.

  • PDF