• 제목/요약/키워드: high magnetic fields

검색결과 412건 처리시간 0.028초

MR유체를 이용한 유량제어 밸브 (Development of Flow Control Valve Using MR Fluid)

  • 이형돈;배형섭;이육형;박명관
    • 제어로봇시스템학회논문지
    • /
    • 제17권9호
    • /
    • pp.888-891
    • /
    • 2011
  • This paper presents development of flow control valve using MR fluid. Generally, since the apparent viscosity of MR fluids is adjusted by applying magnetic fields, the MR valves can control high level fluid power without any mechanical moving parts. In this paper, flow control valve using MR fluid on the behavior of the magnetic field influence on the numerical analysis of more accurate electromagnetic parameters were obtained, even if when magnetic field apply inside of surrounding MR fluid from electromagnet, more realistic designing way analysis of characteristic of whole magnetic field distribution is suggested by surrounding magnetic material. Also, comparison of flow rate inlet and outlet, behavior of MR fluid in experiments proposed. A new type of flow control valve using MR fluid is proposed by analysis of behavior of MR fluid in experiments.

자계내에서 직류 차단시 아크소호 특성에 관한 연구 (A Study on the Characteristics of Arc Quenching of DC Interruption in the Magnetic Field)

  • 이동원;송현직;박원주;이광식;이동인
    • 한국조명전기설비학회지:조명전기설비
    • /
    • 제10권5호
    • /
    • pp.66-74
    • /
    • 1996
  • 본 연구는 자계내에서 직류 차단설비의 아크소호 현상을 규명하기 위하여 침대 평판 전극에 부극성 직류 고전압 인가시 아크전압 및 전류 그리고 이들 파형특성을 자계세기의 변화에 따라 연구 검토하였다. 본 연구에서 얻은 중요한 결론은 다음과 같다. 자계가 인가되지 않았을 때는 아크동특성이 나타나지 않고 아크전압의 감소와 아트전류의 증가가 순간적으로 이루어진 후, 일정하게 유지되었을 뿐만아니라 전류 파형으로부터 아크방전이 연속적으로 발생됨을 알수 있었다. 자계가 인가되면 아크동특성이 나타난후, 서서히 아크전압이 감소되고 증가되고 아크전류는 감소되었다. 그리고 전류파형으로부터 아크방전은 단속적으로 됨에 따라 전류영점이 나타남을 알 수 있었고, 전류영점이 나타나는 주기와 아크방전의 단속 주기가 일치하였으며 자계가 증가될수록 주기도 증가되었다.

  • PDF

축 방향 자장이 인가된 용량 결합형 라디오 주파수 플라즈마의 특성 연구 (A study on the characteristics of axially magnetized capacitively coupled radio frequency plasma)

  • 이호준;이동영;태흥식;황기웅
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1999년도 추계학술대회 논문집 학회본부 C
    • /
    • pp.1066-1068
    • /
    • 1999
  • Magnetic field is commonly used in low temperature processing plasmas in order to obtain high density. E $\times$ B magnetron or surface multipole configuration were most popular. However, the properties of capacitively coupled rf plasma confined by axially applied static magnetic fields have rarely been studied. In this paper, the effects of magnetic field on the characteristics of 13.56MHz/40KHz argon plasma will be reported. Ion saturation current, electron temperature and plasma potential were measured by Langmuir probe and omissive probe. At low pressure region ($\sim$10mTorr), ion current was increased by a factor of 3 - 4 due to reduction of diffusion loss of charged particles to the wall. It was observed that magnetic field induces large time variation of the plasma potential. The experimental result was compared with particle-in-cell simulation. It was also observed that electron temperature tend to decrease with increasing magnetic induction level for 40KHz discharge.

  • PDF

Numerical analysis of the electromagnetic force for design optimization of a rectangular direct current electromagnetic pump

  • Lee, Geun Hyeong;Kim, Hee Reyoung
    • Nuclear Engineering and Technology
    • /
    • 제50권6호
    • /
    • pp.869-876
    • /
    • 2018
  • The force of a direct current (DC) electromagnetic pump used to transport liquid lithium was analyzed to optimize its geometrical and electrical parameters by numerical simulation. In a heavy-ion accelerator, which is being developed in Korea, a liquid lithium film is utilized for its high charge-stripping efficiency for heavy ions of uranium. A DC electromagnetic pump with a flow rate of $6cm^3/s$ and a developed pressure of 1.5 MPa at a temperature of $200^{\circ}C$ was required to circulate the liquid lithium to form liquid lithium films. The current and magnetic flux densities in the flow gap, where a $Sm_2Co_{17}$ permanent magnet was used to generate a magnetic field, were analyzed for the electromagnetic force distribution generated in the pump. The pressure developed by the Lorentz force on the electromagnetic force was calculated by considering the electromotive force and hydraulic pressure drop in the narrow flow channel. The opposite force at the end part due to the magnetic flux density in the opposite direction depended on the pump geometrical parameters such as the pump duct length and width that defines the rectangular channels in the nonhomogeneous distributions of the current and magnetic fields.

Influence of the Galactic Magnetic Field on the Distribution of Ultra-high-Energy Cosmic Rays

  • Kim, Jihyun;Kim, Hang Bae;Ryu, Dongsu
    • 천문학회보
    • /
    • 제40권2호
    • /
    • pp.38.3-38.3
    • /
    • 2015
  • Recently, the Pierre Auger Observatory (PAO), the largest ground-based project for detecting ultra-high-energy cosmic rays (UHECRs), published their 10-year data. We can access an unprecedented number of UHECR data observed by the project, which give us a possibility to get an accurate statistical test result. In this work, we investigate the influence of the galactic magnetic field (GMF) on the distribution of UHECRs by searching the correlation with the large-scale structure (LSS) of the universe. We simulate the mock UHECR events whose trajectories from the sources would be deflected by the Gaussian smearing angle which reflects the influence by the GMF. By the statistical test, we compare the correlation between the expected/observed distribution of UHECRs and the LSS of the universe in the regions of sky divided by the galactic latitude, varying the smearing angle. Here, we assume the deflections by the GMF are mainly dependent on the galactic latitude. Using the maximum likelihood estimation, we find the best-fit smearing angle in each region. If we get a trend that best-fit smearing angles differ from each region, the influence of GMF may be stronger than that of intergalactic magnetic fields (IGMF) because it is known that the distribution of IGMF follows the LSS of the universe. Also, we can estimate the strength of the GMF using the best-fit parameter by the maximum likelihood.

  • PDF

수열합성을 이용하여 제작한 Fe3O4 결정입자의 자기적 특성 (Magnetic Properties of Micron Sized Fe3O4 Crystals Synthesized by Hydrothermal Methods)

  • 이기범;남충희
    • 한국분말재료학회지
    • /
    • 제26권6호
    • /
    • pp.481-486
    • /
    • 2019
  • Iron oxides currently attract considerable attention due to their potential applications in the fields of lithiumion batteries, bio-medical sensors, and hyperthermia therapy materials. Magnetite (Fe3O4) is a particularly interesting research target due to its low cost, good biocompatibility, outstanding stability in physiological conditions. Hydrothermal synthesis is one of several liquid-phase synthesis methods with water or an aqueous solution under high pressure and high temperature. This paper reports the growth of magnetic Fe3O4 particles from iron powder (spherical, <10 ㎛) through an alkaline hydrothermal process under the following conditions: (1) Different KOH molar concentrations and (2) different synthesis time for each KOH molar concentrations. The optimal condition for the synthesis of Fe3O4 using Fe powders is hydrothermal oxidation with 6.25 M KOH for 48 h, resulting in 89.2 emu/g of saturation magnetization at room temperature. The structure and morphologies of the synthesized particles are characterized by X-ray diffraction (XRD, 2θ = 20°-80°) with Cu-kα radiation and field emission scanning electron microscopy (FE-SEM), respectively. The magnetic properties of magnetite samples are investigated using a vibrating sample magnetometer (VSM). The role of KOH in the formation of magnetite octahedron is observed.

Statistical study of phase reversal locations on the SC-associated preliminary impulse

  • Sung, Suk-Kyung;Kim, Khan-Hyuk;Cho, Kyung-Suk
    • 한국우주과학회:학술대회논문집(한국우주과학회보)
    • /
    • 한국우주과학회 2008년도 한국우주과학회보 제17권2호
    • /
    • pp.30.3-30.3
    • /
    • 2008
  • In this study, we investigate the magnetic latitude of phase reversal on the sudden commencement (SC)-associated preliminary impulse with 267 SC events using the ground magnetometer data of the IMAGE from 1997 to 2005. During SC event, geomagnetic fields are affected by various currents flowing in the magnetosphere and/or ionosphere. In particular, high-latitude geomagnetic field variations are significantly dominated by the change of SC-associated field aligned current (FAC). Until now, however, there are few studies to examine where the location of the FAC in the ionosphere is and what determines the location of the FAC. The location of the SC-associated FAC can be examined by using magnetometer data obtained from high-latitude stations distributed along the same magnetic meridian. The phase reversal locations are concentrated two regions, ~62 deg (L~4.5) and ~70 deg (L~8.5) in magnetic latitude. If FAC is a result of a mode conversion from fast mode to Alfven mode, then the FAC location could be determine by the duration time of the input energy. When we use the rise time, dT, as the input energy, there is no relationship between dT and the location where the first pulse of SC is reversed. We consider other factors such as local time and solar wind condition.

  • PDF

Iron Core Design of 3-Phase 40MVA HTS Power Transformer Considering Voltages per Turn

  • Lee, Chan-joo;Seok, Bok-yeol
    • KIEE International Transaction on Electrical Machinery and Energy Conversion Systems
    • /
    • 제4B권2호
    • /
    • pp.54-58
    • /
    • 2004
  • This paper presents the iron core design method of a high temperature superconducting (HTS) transformer considering voltages per turn (V/T). In this research, solenoid type HTS coils were selected for low voltage (LV) winding and double pancake coils for high voltage (HV) winding, just as in conventional large power transformers. V/T is one of the most fundamental elements used in designing transformers, as it decides the core cross sectional area and the number of primary and secondary winding turns. By controlling the V/T, the core dimension and core loss can be changed diversely. The leakage flux is another serious consideration in core design. The magnetic field perpendicular to the HTS wire causes its critical current to fall rapidly as the magnitude of the field increases slowly. Therefore in the design of iron core as well as superconducting windings, contemplation of leakage flux should be preceded. In this paper, the relationship between the V/T and core loss was observed and also, through computational calculations, the leakage magnetic fields perpendicular to the windings were found and their critical current decrement effects were considered in relation to the core design. The % impedance was calculated by way of the numerical method. Finally, various models were suggested.

해상도 향상을 위한 4.7 T 자기공명유속계 용 솔레노이드 RF 코일 개발 (Development of Solenoid RF coil for 4.7 T Magnetic Resonance Velocimeter to Improve Resolution)

  • 양병권;조지현;송시몬
    • 한국가시화정보학회지
    • /
    • 제14권2호
    • /
    • pp.40-45
    • /
    • 2016
  • Magnetic resonance velocimeter (MRV) is a powerful tool to non-invasively measure the velocity of a fluid flow in various fields ranging from medicine to engineering. However, since the demands for accurate measurement in the solid/liquid interface for cardiovascular diseases and porous media increase, the improvement of spatial resolution is required. In this study, a solenoid RF coil is developed for high spatial resolution measurement. The signal-to-noise ratio in solenoid RF coil is increased seventeen times better than that in commercial coil. Moreover, the velocity distribution of Hagen-Poiseuille flow is measured with in-plane resolution of $36{\mu}m$ by $36{\mu}m$ and the accuracy of the measured velocity is compared with theoretical distribution of the laminar flow. Flow rate calculated by MRV is estimated with the flow rate injected by syringe pump.

Design and fabrication of race-track type field coil for the high temperature superconduction generator

  • Baik, S.K.;Jo, Y.S.;Ha, H.S.;Lee, E.Y.;Jeong, D.Y.;Kwon, Y.K.;Ryu, K.S.;Sohn, M.H.
    • 한국초전도학회:학술대회논문집
    • /
    • 한국초전도학회 2000년도 High Temperature Superconductivity Vol.X
    • /
    • pp.248-251
    • /
    • 2000
  • The fabrication and characteristics of HTS race-track type field coil for generators was carried out. Field coils are composed of 3 pancake coils wound by 37-filamental Bi-2223/Ag-alloy tapes. The winding machine is horizontal type. The critical currents (I$_c$) of the superconducting tapes were measured with variation of bending strain and external magnetic fields. I$_c$ of both whole field coils and 3 pancake coils were measured as a function of temperature. At 77K under the self-field, I$_c$ of whole field coils was 12A, while in the case of middle pancake coil, I$_c$ was 15A. The distribution of magnetic field B was obtained, using 3-D FEM. Our simulation showed that maximums of B${\bot}$A in x-y plane were locally distributed in both the upper and the lower coils. In addition, the fabrication processes and the characteristics of field coil are described.

  • PDF