• Title/Summary/Keyword: high isolation

Search Result 1,967, Processing Time 0.032 seconds

Isolation and In Vitro Culture of Vascular Endothelial Cells from Mice

  • Choi, Shinkyu;Kim, Ji Aee;Kim, Kwan Chang;Suh, Suk Hyo
    • The Korean Journal of Physiology and Pharmacology
    • /
    • v.19 no.1
    • /
    • pp.35-42
    • /
    • 2015
  • In cardiovascular disorders, understanding of endothelial cell (EC) function is essential to elucidate the disease mechanism. Although the mouse model has many advantages for in vivo and in vitro research, efficient procedures for the isolation and propagation of primary mouse EC have been problematic. We describe a high yield process for isolation and in vitro culture of primary EC from mouse arteries (aorta, braches of superior mesenteric artery, and cerebral arteries from the circle of Willis). Mouse arteries were carefully dissected without damage under a light microscope, and small pieces of the vessels were transferred on/in a Matrigel matrix enriched with endothelial growth supplement. Primary cells that proliferated in Matrigel were propagated in advanced DMEM with fetal calf serum or platelet-derived serum, EC growth supplement, and heparin. To improve the purity of the cell culture, we applied shearing stress and anti-fibroblast antibody. EC were characterized by a monolayer cobble stone appearance, positive staining with acetylated low density lipoprotein labeled with 1,1'-dioctadecyl-3,3,3',3'-tetramethyl-indocarbocyanine perchlorate, RT-PCR using primers for von-Willebrand factor, and determination of the protein level endothelial nitric oxide synthase. Our simple, efficient method would facilitate in vitro functional investigations of EC from mouse vessels.

Amplitude-dependent Complex Stiffness Modeling of Dual-chamber Pneumatic Spring for Pneumatic Vibration Isolation Table (공압제진대용 이중챔버형 공압스프링의 복소강성 모형화)

  • Lee, Jeung-Hoon;Kim, Kwang-Joon
    • Transactions of the Korean Society for Noise and Vibration Engineering
    • /
    • v.18 no.1
    • /
    • pp.110-122
    • /
    • 2008
  • Pneumatic vibration isolator typically consisting of dual-chamber pneumatic springs and a rigid table are widely employed for proper operation of precision instruments such as optical devices or nano-scale equipments owing to their low stiffness- and high damping-characteristics. As environmental vibration regulations for precision instruments become more stringent, it is required to improve further the isolation performance. In order to facilitate their design optimization or active control, a more accurate mathematical model or complex stiffness is needed. Experimental results we obtained rigorously for a dual-chamber pneumatic spring exhibit significantly amplitude dependent behavior, which cannot be described by linear models in earlier researches. In this paper, an improvement for the complex stiffness model is presented by taking two major considerations. One is to consider the amplitude dependent complex stiffness of diaphragm necessarily employed for prevention of air leakage. The other is to employ a nonlinear model for the air flow in capillary tube connecting the two pneumatic chambers. The proposed amplitude-dependent complex stiffness model which reflects dependency on both frequency and excitation amplitude is shown to be very valid by comparison with the experimental measurements. Such an accurate nonlinear model for the dual-chamber pneumatic springs would contribute to more effective design or control of vibration isolation systems.

Effectiveness of non-linear fluid viscous dampers in seismically isolated buildings

  • Guler, Elif;Alhan, Cenk
    • Earthquakes and Structures
    • /
    • v.17 no.2
    • /
    • pp.191-204
    • /
    • 2019
  • Near-field earthquake records including long-period high-amplitude velocity pulses can cause large isolation system displacements leading to buckling or rupture of isolators. In such cases, providing supplemental damping in the isolation system has been proposed as a solution. However, it is known that linear viscous dampers can reduce base displacements in case of near-field earthquakes but at the potential expense of increased superstructure response in case of far-field earthquakes. But can non-linear dampers with different levels of non-linearity offer a superior seismic performance? In order to answer this question, the effectiveness of non-linear viscous dampers in reducing isolator displacements and its effects on the superstructure response are investigated. A comparison with linear viscous dampers via time history analysis is done using a base-isolated benchmark building model under historical near-field and far-field earthquake records for a wide range of different levels of non-linearity and supplemental damping. The results show that the non-linearity level and the amount of supplemental damping play important roles in reducing base displacements effectively. Although use of non-linear supplemental dampers may cause superstructure response amplification in case of far-field earthquakes, this negative effect may be avoided or even reduced by using appropriate combinations of non-linearity level and supplemental damping.

Nonlinear dynamic analysis of a RC bridge subjected to seismic loading

  • Nanclares, German;Ambrosini, Daniel;Curadelli, Oscar;Domizio, Martin
    • Smart Structures and Systems
    • /
    • v.26 no.6
    • /
    • pp.765-779
    • /
    • 2020
  • Collapse of bridges in recent earthquakes demonstrates the need to deepen the understanding of the behaviour of these structures against seismic actions. This paper presents a highly detailed numerical model of an actual bridge subjected to extreme seismic action which results in its collapse. Normally, nonlinear numerical models have high difficulties to achieve convergence when reinforced concrete is intended to be represented. The main objective of this work is to determine the efficiency of different passive control strategies to prevent the structural collapse of an existing bridge. Metallic dampers and seismic isolation by decoupling the mass were evaluated. The response is evaluated not only in terms of reduction of displacements, but also in increasing of shear force and axial force in key elements, which can be a negative characteristic of the systems studied. It can be concluded that the use of a metallic damper significantly reduces the horizontal displacements and ensures the integrity of the structure from extreme seismic actions. Moreover, the isolation of the deck, which in principle seems to be the most effective solution to protect existing bridges, proves inadequate for the case analysed due to its dynamic characteristics and its particular geometry and an unpredictable type of axial pounding in the columns. This unexpected effect on the isolation system would have been impossible to identify with simplified models.

Development of Safety Monitoring Program for Psychiatric Emergency Using Google Teachable Machine (구글 티처블머신을 활용한 정신과적 응급 대상자의 병실 안전 모니터링 프로그램 개발)

  • Eun-Min Lee;Tae-Hun Kim
    • The Journal of the Convergence on Culture Technology
    • /
    • v.9 no.1
    • /
    • pp.613-618
    • /
    • 2023
  • In this paper, a monitoring program that can automatically determine whether a patient admitted to an isolation room acts out of a stable state through a screen photographed in real time is described. The motion recognition model of this program was built by learning through transfer learning. 900 images were used for the three movements, and this program was developed for the web to support all environments. The model was determined with high accuracy to determine the state of the subject hospitalized in the isolation room, and can be applied by applying it to the existing isolation room monitoring system.

A Study on the Active Vibration Isolator PID Auto-tuning Using PSO Algorithm (PSO알고리즘을 활용한 능동 제진 시스템 PID 오토 튜닝에 관한 연구)

  • An, Il Kyun;Huh, Heon;Kim, Hyo-Young;Kim, Kihyun
    • Journal of the Semiconductor & Display Technology
    • /
    • v.21 no.4
    • /
    • pp.59-64
    • /
    • 2022
  • Vibration is one of the factors that degrades the performance of equipment and measurement equipment used in high-tech industries such as semiconductors and display. The vibration isolator is classified into passive type and active type. The passive vibration isolator has the weakness of insufficient vibration isolation performance in the low frequency band, so an active vibration control system that can overcome these problems is used recently. In this paper, PID controller is used to control the active vibration isolator. Methods for setting the gain of the PID controller include the Zeigler-Nichols method, the pole placement method. These methods have the disadvantage of requiring a lot of time or knowing the system model accurately. This paper proposes the gain auto tuning method of the active vibration isolator applied with the PSO algorithm, which is an optimization algorithm that is easy to implement and has stable convergence performance with low calculations. It is expected that it will be possible to improve vibration isolation performance and reduce the time required for gain tuning by applying the proposed PSO algorithm to the active vibration isolator.

Case Study On The Seismic Design Strategy For Post-Quake Functional Buildings In China

  • Peng Liu;Xue Li;Yu Cheng;Xiaoyu Gao;Jinai Zhang;Yongbin Liu
    • International Journal of High-Rise Buildings
    • /
    • v.12 no.3
    • /
    • pp.251-262
    • /
    • 2023
  • In response to China's "Regulations on the Management of Earthquake Resistance of Building Constructions" on the provision of eight types of important buildings to maintain functional after fortified earthquakes occur, "Guidelines for Seismic Design of post-quake functional buildings (Draft for Review)" distinguishes Class I and Class II buildings, and gives the performance objectives and seismic verification requirements for design earthquakes and severe earthquakes respectively. In this paper, a hospital and a school building are selected as examples to design according to the requirements of fortification of Intensity 8 and 7 respectively. Two design strategies, the seismic isolation scheme and energy dissipation scheme, are considered which are evaluated through elastic-plastic dynamic time-history analysis to meet the requirement of post-quake functional buildings. The results show that the seismic isolation design can meet the requirements in the above cases, and the energy dissipation scheme is difficult to meet the requirements of the "Guidelines" on floor acceleration in some cases, for which the scheme shall be made valid through the seismic resilience assessment. The research in this paper can provide a reference for designers to choose schemes for post-quake functional buildings.

Wide-Bandwidth Wilkinson Power Divider for Three-Way Output Ports Integrated with Defected Ground Structure

  • Sreyrong Chhit;Jae Bok Lee;Dal Ahn;Youna Jang
    • Journal of information and communication convergence engineering
    • /
    • v.22 no.1
    • /
    • pp.14-22
    • /
    • 2024
  • This study presents the design of a Wilkinson power divider for three-way output ports (WPD3OP), which incorporates a defected ground structure (DGS). An asymmetric power divider is integrated into the output ports of the conventional Wilkinson power divider (WPD), establishing a three-way output port configuration. The DGS introduces periodic or irregular patterns into the ground plane to suppress unwanted electromagnetic wave propagation, and its incorporation can enhance the performance of the power divider, in terms of the power-division ratio, isolation, and bandwidth, by reducing spurious resonances. The proposed design algorithm for an asymmetric power divider for three-way output ports is analyzed via circuit simulations using High-Frequency Simulation Software (HFSS). The results verify the validity of the proposed method. The analysis of the WPD3OP integrated with DGS certifies the achievement of a center frequency of 2 GHz. This confirmation is supported by schematic ideal design simulation results and measurements encompassing insertion losses, return losses, and isolation.

Non-Isolation, High-Efficiency and High-Voltage-Output DC-DC Converter using the Self-Driven Synchronous Switch (자기구동 동기스위치를 이용한 비절연 고효율 고전압출력 DC-DC 컨버터)

  • Jeong, Gang-Youl
    • Journal of IKEEE
    • /
    • v.23 no.3
    • /
    • pp.962-970
    • /
    • 2019
  • In this paper, the non-isolation, high-efficiency and high-voltage-output DC-DC converter using the self-driven synchronous switch is proposed. The proposed converter achieves high-voltage-output by applying a tapped inductor to the conventional boost DC-DC converter structure, and it reduces the voltage stress of main switch applying the lossless capacitor-diode (LCD) snubber to the switch. And the proposed converter applies the synchronous switch instead of the diode to the output part, and thus it resolves the reverse recovery problem and achieves high-efficiency. The synchronous switch of proposed converter uses the self-driven method and has a simple structure. In this paper, the operation principle of proposed converter is explained, and then, a design example of the converter prototype is presented. And the characteristics of the proposed converter are shown through experimental results of the prototype made with the designed circuit parameters.

A Study on Design and Fabrication of High Isolation W-band MIMIC Single-balanced Mixer (높은 격리도 특성의 W-밴드용 MIMIC 단일 평형 주파수 혼합기의 설계 및 제작 연구)

  • Yi, Sang-Yong;Lee, Mun-Kyo;An, Dan;Lee, Bok-Hyung;Lim, Byeong-Ok;Rhee, Jin-Koo
    • Journal of the Institute of Electronics Engineers of Korea TC
    • /
    • v.44 no.11
    • /
    • pp.48-53
    • /
    • 2007
  • In this paper, a high LO-RF isolation W-band MIMIC single-balanced mixer was designed and fabricated using a branch line coupler and a ${\lambda}/4$ transmission line. The W-band MIMIC single-balanced mixer was designed using the $0.1\;{\mu}m$ InGaAs/InAlAs/GaAs Metamorphic HEMT diode. The fabricated MHEMT was obtained the cut-off frequency($f_T$) of 154 GHz and the maximum oscillation frequency($f_{max}$) of 454 GHz. The designed MIMIC single-balanced mixer was fabricated using $0.1\;{\mu}m$ MHEMT MIMIC process. From the measurement, the conversion loss of the single-balanced mixer was 12.8 dB at an LO power of 8.6 dBm. P1 dB(1 dB compression point) of input and output were 5 dBm and -8.9 dBm, respectively. The LO-RF isolations of single-balanced mixer was obtained 37.2 dB at 94 GHz. We obtained in this study a higher LO-RF isolation compared to some other balanced mixers in millimeter-wave frequencies.