• Title/Summary/Keyword: high intensity zone

Search Result 125, Processing Time 0.023 seconds

The Physical Characteristics of the flow field and the Form of Arrested Salt Wedge (정상 염수쇄기의 형상과 흐름 장의 물리적 특성)

  • 이문옥
    • 한국해양학회지
    • /
    • v.25 no.2
    • /
    • pp.62-73
    • /
    • 1990
  • An experimental study is performed in order to catch the characteristics of the flow field at arrested salt wedge, using a rectangular open channel. Arrested salt wedge is generally so stable that the observations are easy, but velocities and interfacial waves are measured with the aid of visualization method, by injection of fluorescent dyes. The density interface, which is defined as the zone of maximum density variation with depth, exists in about 0.5 cm below the visual interface, and vertical density profile is quite well satisfied with Homeborn model. Interfacial layer has high turbulent intensity and its thickness decreases as the overall Richardson number increases and has magnitude of roughly 17% of upper layer. Cross-sectional velocity distribution just shows the influence of a side-wall friction and in the upper layer vertical velocity profile also becomes uniformly as Reynolds number increases, but in the lower layer it shows nearly parabolic type. Supposes that we divide salt wedge into three domains, that is, river mouth, intermediate and tip zone, entertainment coefficient is small at the intermediate zone and large at the river mouth and the tip zone. River mouth or intermediate zone has comparatively stable interface and capillary wave therefore s produced and propagated downstream. On the other hand, tip zone is very unstable, cusping ripple or bursting ripple is then produced incessantly. Arrested salt wedge form is nearly linear and has no relation to densimetric Froude number and Reynolds number.

  • PDF

Variation of Incident Wave Angle in the Surf Zone Observed from Digital Videos (해안 비디오로부터 관측된 쇄파지역에서 입사각의 변화)

  • Yoo, Je-Seon;Shin, Dong-Min;Cho, Yong-Sik
    • Journal of Korean Society of Coastal and Ocean Engineers
    • /
    • v.21 no.2
    • /
    • pp.154-163
    • /
    • 2009
  • Incident wave angles are conventionally estimated by the directional spectrum analysis of wave data collected from in-situ sensors. The in-situ measurements are limited in monitoring incident wave angles in the wide surf zone, since the techniques are typically expensive, labor-intensive, and point-measuring. In this study, estimation of incident wave angles using wave crest features captured in digital video imagery is proposed to observe incident wave directions over the surf zone. Line signatures of wave crests having high image pixel intensities are extracted by moving an interrogation window to identify high intensity pixels in sequential video images. Wave angles are computed by taking the first derivative of the extracted crest signatures, i.e. local slope of the crest signatures in the two-dimensional physical plane. Compared to the wave angle estimates obtained by the directional spectrum analysis, video-based wave angle estimates show good agreements in general.

Spectroscopic Study of the Symbiotic Star CI Cyg

  • Hyung, Siek
    • Journal of the Korean earth science society
    • /
    • v.35 no.5
    • /
    • pp.313-323
    • /
    • 2014
  • We secured the high dispersion spectra of the symbiotic star CI Cyg. The HI, HeI, and HeII line profiles were analyzed using the relatively long exposure data including 1800 sec (Sep. 12, 1998, phase=0.90), 3600 sec (Aug. 12, 2002, ${\phi}=0.47$), and 1800 sec (Oct. 21, 2009, ${\phi}=0.54$). Although a minor outburst was reported in 2008, our three observation periods were generally known to be quiescent in earlier photometric studies. With the help of hydrodynamic simulations, we identified the two emission zones responsible for the blue- and red-shifted line components: (a) an accretion disk around a hot white dwarf star which consists of the outer cool HeI emission zone and the inner hot HeII emission part, and (b) a high density zone near the inner Lagrangian point responsible for the HeI line flux variation and the broadening of its line profile. The HeII line fluxes indicate that the HeII emission zone of the accretion disk is relatively stable, implying a constant gas inflow from the giant star throughout the quiescent period. The 2002 HeI data showed that the notable mass flow activity through the inner Lagrangian point occurred during this period and its flux intensity became strongest, whereas the HeII line width in the same period indicates that its flow activity forced the accretion disk to expand. The [OIII] lines were observed in 1998 but not detected in 2002 and 2009, implying the disappearance of the low density zone. Based on our kinematical studies upon the line profiles, we conclude that CI Cyg was stable in 1998 among the three observation periods selected in this research.

Predictors of discogenic pain in magnetic resonance imaging: a retrospective study of provocative discography performed by posterolateral approach

  • Jain, Anuj;Jain, Suruchi;Barasker, Swapnil Kumar;Agrawal, Amit
    • The Korean Journal of Pain
    • /
    • v.34 no.4
    • /
    • pp.447-453
    • /
    • 2021
  • Background: Provocative discography (PD) is a test that is useful in diagnosing discogenic pain (DP). In this study, to diagnose DP, we used a posterolateral approach of needle placement and followed pressure criteria laid down by the Spine Intervention Society. The aim was to identify the correlation between magnetic resonance imaging (MRI) findings (desiccation, high intensity zone and change in shape and size of the disc) and the results of PD. Methods: Records of 50 patients who underwent PD for DP were analyzed. A total of 109 PDs were performed, with 54 suspect and 55 control discs. Alternate pain generators were ruled out. Results: A total of 35 suspect discs were positive on PD. The mean disc pressure in the suspect disc was 31.9 ± 7.9 psi (range, 15-44). Of the 50 patients who underwent PD, 35 had positive MRI findings. A significant positive correlation was found only between disc desiccation and discography result (r = 0.6, P < 0.001). Logistic regression analysis revealed that only desiccation successfully predicted the result of discography (OR = 26.5, P < 0.001); a high intensity zone and a disc protrusion/extrusion had an OR 2.3 and 1.24, respectively. Disc desiccation of Pfirmann grade 3 or more had a sensitivity and specificity of 0.93 and 0.64 respectively in identifying painful discs; the positive likelihood ratio was 2.58 while the negative likelihood ratio was 0.11. Conclusions: In patients with DP, disc desiccation is the most useful MRI feature that predicts a painful disc on PD.

Multilevel performance-based procedure applied to moderate seismic zones in Europe

  • Catalan, Ariel;Foti, Dora
    • Earthquakes and Structures
    • /
    • v.8 no.1
    • /
    • pp.57-76
    • /
    • 2015
  • The Performance-based Earthquake Engineering (PBEE) concept implies the definition of multiple target performance levels of damage which are expected to be achieved (or not exceeded), when the structure is subjected to earthquake ground motion of specified intensity. These levels are associates to different return period (RP) of earthquakes and structural behaviors quantified with adopted factors or indexes of control. In this work an 8-level PBEE study is carried out, finding different curves for control index or Engineering Demand Parameters (EDP) of levels that assess the structural behavior. The results and the curves for each index of control allow to deduce the structural behavior at an a priori unspecified RP. A general methodology is proposed that takes into account a possible optimization process in the PBEE field. Finally, an application to 8-level seismic performance assessment to structure in a Spanish seismic zone permits deducing that its behavior is deficient for high seismic levels (RP > 475 years). The application of the methodology to a low-to-moderate seismic zone case proves to be a good tool of structural seismic design, applying a more sophisticated although simple PBEE formulation.

Evaluation and Design of Infiltration and Filtration BMP Facility (침투 여과형 비점오염저감시설의 설계 및 평가)

  • Choi, Ji-Yeon;Maniquiz, Marla Chua;Lee, So-Young;Kang, Chang-Guk;Lee, Jung-Yong;Kang, Hee-Man;Kim, Lee-Hyung
    • Journal of Environmental Impact Assessment
    • /
    • v.19 no.5
    • /
    • pp.475-481
    • /
    • 2010
  • Lots of pollutants typically originating from urban transportation are accumulating on the paved surfaces during dry periods and are washed-off directly to the river during a storm. Also, paved surfaces are contributing to increase in peak flows and volume of stormwater flows. These are the main reasons why the water quality of rivers and lakes remain polluted and still below standards. Currently, several management practices are being applied in developed countries but the design standards are still lacking. This research was conducted to develop a treatment technology that can be useful to address the problems concerning runoff quality and quantity. A lab scale infiltration device consisting of a pretreatment tank and media zone was designed and tested for various flow regimes characterizing the low, average and high intensity rainfall. Based on the experiments, the high intensity flow resulted to increase in outflow event mean concentration (EMC) of pollutants, about twice as much as the average outflow EMC. However, 78 to 88% of the total suspended solids were captured and retained in the pretreatment tank because of sedimentation. The removal of heavy metals such as zinc and lead was greatly affected by the vertical placement of woodchip layer prior to the media zone. It was observed that the high carbon content (almost 50%) in the woodchip provided opportunity for enhancing its uptake of metal by adsorption. The findings implied that the reduction of pollutants can be greatly achieved by means of proper pretreatment to allow for settling of particles with a combination of using high carbon source media like woodchip and a geotextile mat to reduce the flow before filtering into the media zone and finally discharging to the drainage system.

Fiber Orientation Effects on the Fracture Process and Acoustic Emission Characteristics of Composite Laminates

  • Woo, Sung-Choong;Kim, Jung-Heun;Choi, Nak-Sam
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.25 no.6
    • /
    • pp.451-458
    • /
    • 2005
  • The effects of fiber orientation on acoustic emission(AE) characteristics have been studied for various composite laminates. Reflection and transmission optical microscopy were used to investigate the damage zone of specimens. AE signals were classified through short time Fourier transform(STFT) as different types: AE signals with a high intensity and high frequency band were due to fiber fracture, while weak AE signals with a low frequency band were due to matrix cracking and/or interfacial cracking. Characteristic feature in the rate of hit-events having high amplitudes showed a procedure of fiber breakages, which expressed the characteristic fracture processes of notched fiber-reinforced plastics with different fiber orientations. As a consequence, the behavior of fracture in the continuous composite laminates could be monitored through nondestructive evaluation(NDE) using the AE technique.

Prediction of Spatial Heat Release Rate of Combustion Chamber by Radicals-PLIF (라디칼 PLIF계측을 이용한 연소실의 공간적 열발생율 예측)

  • Choi, G.M.
    • Journal of ILASS-Korea
    • /
    • v.8 no.4
    • /
    • pp.9-16
    • /
    • 2003
  • The Purpose of this study is to investigate the relationships between the local heat release rate and CH concentration have been investigated by numerical simulations of methane-air premixed flames. And simultaneous CH and OH PLIF(Planar Laser Induced Fluorescence) measurement has been also conducted for lean premixed flame as well as for laminar flames. Numerical simulations are conducted for laminar premixed flames and turbulent ones by using PREMIX in CHEMKIN and two dimensional DNS code with GRI mechanism version 2.11, respectively. In the case of laminar premixed flame, the distance between the peak of heat release rate and that of CH concentration is under $91{\mu}m$ for all equivalence ratio calculated in present work. Even for the premixed flame in high intensity turbulence, the distribution of the heat release rate coincides with that of CH mole fraction. For CH PLIF measurements in the laminar premixed flame burner, CH fluorescence intensity as a function of equivalence ratio shows a similar trend with CH mole fraction computed by GRI mechanism. Simultaneous CH and OH PLIF measurement gave us useful information of instantaneous reaction zone. In addition, CH fluorescence can be measured even for lean conditions where CH mole fraction significantly decreases compared with that of stoichiometric condition. It was found that CH PLIF measurements can be applicable to the estimation of the spatial fluctuations of heat release rate in the engine combustion.

  • PDF

Stress Corrosion Cracking Behavior under Cavitation Erosion-Corrosion in Sea Water-Part (II) (해수환경중 캐비테이션 침식-부식 하에서의 응력부식균열 거동 (II))

  • 안석환;임우조
    • Journal of the Korean Society of Fisheries and Ocean Technology
    • /
    • v.36 no.2
    • /
    • pp.139-146
    • /
    • 2000
  • Cavitation can occur in pipes when liquid is moving at high velocity, especially at pittings where the smooth bore of the pipe is interrupted. The effect is usually to produce pitting on the downstream side of the turbulence. However, stress corrosion cracking behavior under cavitation erosion-corrosion was neatly unknown. In this study, therefore, some were investigated of stress corrosion cracking behavior, others were stress corrosion cracking behavior under cavitation erosion-corrosion of water injection. And datas obtained as the results of experiment were compared between the two. Mainresult obtained are as follows: 1) Stress corrosion cracking growth rate of heat affected zone under cavitation erosion-corrosion becomes most rapid, and stress intensity factor $K_1$becomes most high. 2) Stress corrosion cracking growth mechanism by cavitation erosion-corrosion is judgement on the strength of the film rupture model and the tunnel model. 3) The range of potential as passivation of heat affected zone is less noble than that of base metal, and that value is smaller. 4) Corrosion potential under cavitation erosion-corrosion in loaded stress is less noble than that of stress corrosion, and corrosion current density is higher.

  • PDF

Structure and Characteristics of Diffusion Flaame behind a Bluff-body in a Divergent Flow(II) (확대유로내의 Bluff-Body 후류확산화염의 구조 및 특성 2)

  • ;;Lee, Joong Sung
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.19 no.11
    • /
    • pp.2981-2994
    • /
    • 1995
  • In order to elucidate the effects of positive pressure gradient on flame properties, structure and stabilization, an experimental study is made on turbulent diffusion flame stabilized by a circular cylinder in a divergent duct flow. A commercial grade gaseous propane is injected from two slits on the rod as fuel. In this paper, stabilization, characteristics and flame structure are examined by varying the divergent angle of duct. Temperature, ion current and Schlieren photographs were measured. It is found that critical divergent angle is expected to be about 8 ~ 12 degree through blow-off velocity pattern to divergent angle and the positive pressure gradient influences the flame temperature, intensity of ion current and eddy structure behind the rod. With the increase of divergent angle, typical temperature of recirculation zone is low but intensity of ion current is high in shear layer behind rod. Energy distributions of fluctuating temperature and ion current signals turn up low frequency corresponding to large scale eddies but high frequency corresponding to small scale eddies as well as low with the increase of divergent angle. Therefore the flame structure becomes a typical distributed-reacting flame.