• Title/Summary/Keyword: high frequency monitoring

Search Result 548, Processing Time 0.028 seconds

Design of Electric monitoring System with Powerline Communication (전력선 통신을 적용한 전기 정보 감지 시스템 설계)

  • Kwag, Su-Jin;Lee, Sang-Sun;Lee, Won-Tea
    • Proceedings of the KIEE Conference
    • /
    • 2001.11c
    • /
    • pp.280-283
    • /
    • 2001
  • Recently Many technologies of the Powerline communication are proposed these technologies used high carrier frequency for high speed and stability, but high carrier frequency is restricted by the low of electric wave. So we will propose electric monitoring system that used the commercial powerline communication modem, isn't restricted by the low. Our objects are, first, we compared the low in korea, EU(CENELEC), and USA(FCC). second, proposed a spec of the powerline communication modem. third, design that the electric monitoring system using commercial A/D converter control and manage the electric equipment.

  • PDF

A Framework for Wide-area Monitoring of Tree-related High Impedance Faults in Medium-voltage Networks

  • Bahador, Nooshin;Matinfar, Hamid Reza;Namdari, Farhad
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.1-10
    • /
    • 2018
  • Wide-area monitoring of tree-related high impedance fault (THIF) efficiently contributes to increase reliability of large-scaled network, since the failure to early location of them may results in critical lines tripping and consequently large blackouts. In the first place, this wide-area monitoring of THIF requires managing the placement of sensors across large power grid network according to THIF detection objective. For this purpose, current paper presents a framework in which sensors are distributed according to a predetermined risk map. The proposed risk map determines the possibility of THIF occurrence on every branch in a power network, based on electrical conductivity of trees and their positions to power lines which extracted from spectral data. The obtained possibility value can be considered as a weight coefficient assigned to each branch in sensor placement problem. The next step after sensors deployment is to on-line monitor based on moving data window. In this on-line process, the received data window is evaluated for obtaining a correlation between low frequency and high frequency components of signal. If obtained correlation follows a specified pattern, received signal is considered as a THIF. Thereafter, if several faulted section candidates are found by deployed sensors, the most likely location is chosen from the list of candidates based on predetermined THIF risk map.

Performance of Different Sensors for Monitoring of the Vibration Generated during Thermosonic Non-destructive Testing

  • Kang, Bu-Byoung
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.31 no.2
    • /
    • pp.111-117
    • /
    • 2011
  • Vibration monitoring is required for reliable thermosonic testing to decide whether sufficient vibration is achieved in each test for the detection of cracks. From a practical point of view, a cheaper and convenient monitoring method is better for the application to real tests. Therefore, the performance of different sensors for vibration monitoring was investigated and compared in this study to find a convenient and acceptable measurement method for thermosonics. Velocity measured by a laser vibrometer and strain provide an equivalent HI when measured at the same position. The microphone can provide a cheaper vibration monitoring device than the laser and the heating index calculated by a microphone signal shows similar characteristics to that calculated from velocity measured by the laser vibrometer. The microphone frequency response shows that it underestimates high frequency components but it is applicable to practical tests because it gives a conservative value of HI.

The Assessment of Dynamic Mental Stress with Wearable Heart Activity Monitoring System (착용형 심장활동 모니터링 시스템을 활용한 정신적 스트레스 평가)

  • Kim, Kyeong-Seop;Shin, Seung-Won;Lee, Jeong-Whan;Choi, Hee-Jung
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.57 no.6
    • /
    • pp.1109-1115
    • /
    • 2008
  • In the ubiquitous health monitoring environments, it is quite important not only to evaluate the physiological health condition but also mental stress condition. In order to achieve this goal, a heart activity monitoring system utilizing a wearable bipolar electrode is devised and the heart rate variability(HRV) is extracted and interpreted in both frequency and time feature domains. Consequently, to evaluate the emotional stress condition of the subjects, a stress-induced experimental protocol was applied to healthy subjects and the time and frequency features of heart activity were analyzed in terms of the ratio of low frequency components v.s., high frequency components and the relevant the moving average distributions compromising the successive RR peaks intervals in the ambulatory ECG measurement system.

A Study on Tool Monitoring for High Speed Tapping using AE Signal (AE센서를 이용한 고속 탭핑용 공구 모니터링에 관한 연구)

  • 김용규;이돈진;김선호;안중환
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.10a
    • /
    • pp.315-318
    • /
    • 1997
  • In terms of productivity, the speed of machining process has been increasing in most of engineering part. But the tapping process does not reach at enough level compared with other machining processes because of its complicate cutting mechanism. In the high speed tapping process, the one of important elements is tool monitoring system to prevent tool breakage. This paper describes tool monitoring system by acoustic emission(AE) in the tapping process. We used 2 types of AE sensors in this test. The one is commercial sensor which is used in other machining monitoring system like polishing and the other is a self-fabricated sensor for this test. In this test we purpose to find out the frequency of AE signal in tapping process and verify the possibility of applying AE sensor in in-process tapping monitoring system. Also grasp of characteristic of tapping process by AE signal is handled.

  • PDF

Vibration Characteristics According to Wear Progress of Ball Bearings (볼 베어링의 마멸 상태에 따른 진동 특성의 변화)

  • Cho, SangKyung;Park, JoungWoo;Cho, YonSang
    • Tribology and Lubricants
    • /
    • v.33 no.4
    • /
    • pp.141-147
    • /
    • 2017
  • The vibration data of bearings are very useful for monitoring and determining the condition of the bearings. The defect frequencies of ball bearings have been used for monitoring there condition. However, it is not easy to verify the defect frequencies as the wear progress. Therefore there is a need for an easy method to monitor the damages of bearings in real-time and to observe the variations in vibration characteristics as the wear progress. In this study, a bearing test equipment is constructed to diagnose the damage of bearings. The friction coefficient and vibration data are measured by using a torque sensor and an acceleration sensor, and the correlation between the measured data is analyzed to diagnose the condition of the bearing. We reached the following conclusions from the results. When the ball surface, inner and outer rings of a ball bearing are damaged, the friction coefficient increases to over 0.02 with an adhesion on the surface. Moreover this damage occurs more quickly with an increase in the number of revolutions. In the vibration characteristics, the amplitude of vibration wave appears high with an increase in the friction coefficient. In the high frequency range between 1000 and 2000 Hz, a wide range of frequency components with high amplitude occurs continuously irrespective of the number of revolutions.

Nondestructive Evaluation of Temporarily Repaired CFRP Laminates Subjected to Delaminations due to Localized Heating and Cyclic Loading Combined

  • Han, Tae-Young;Kwon, Oh-Yang
    • Journal of the Korean Society for Nondestructive Testing
    • /
    • v.27 no.3
    • /
    • pp.268-279
    • /
    • 2007
  • The reliability of cold-bonding repair technique of carbon-fiber reinforced plastics (CFRP) laminates, often used as a temporary repair for the airplane maintenance, has been evaluated during cyclic loading and localized heating by nondestructive methods. Major concern was given to the evolution of damage after repair in the form of delaminations due to localized heating and cyclic loading combined. An area of interest both on the specimen repaired by cold-bonding and the specimen without repair where delaminations were induced by localized heating and cyclic loading was monitored by acoustic emission (AE) testing and further examined by pitch-catch low-frequency bond testing, and pulse-echo high-frequency ultrasonic testing. The results showed that the reliability of cold-bonding repair would be significantly reduced by the localized heating and cyclic loading combined rather than by the cyclic loading only. AE monitoring appeared to be an effective and reliable tool to monitor the integrity of temporarily repaired CFRP laminates in terms of the structural health monitoring (SHM) philosophy.

Analyzing Flow Variation and Stratification of Paldang Reservoir Using High-frequency W ater Temperature Data (고빈도 수온 자료를 이용한 팔당호의 성층과 흐름 변화 분석)

  • Ryu, In-Gu;Lee, Bo-Mi;Cho, Yong-Chul;Choi, Hwang-Jeong;Shin, Dong-Seok;Kim, Sang-Hun;Yu, Soon-Ju
    • Journal of Korean Society on Water Environment
    • /
    • v.36 no.5
    • /
    • pp.392-404
    • /
    • 2020
  • The focus of this study was to quantify the thermal stratification and analyze the relationship between the stratification structure and the tributaries to understand flow variations in the Paldang Reservoir. The vertical distribution of the temperature and density gradients, and the depth and thickness of the thermocline were quantitatively calculated using a lake physics tool (rLakeAnalyzer) and high-frequency monitoring data. Based on a density gradient of 0.2 kg/㎥/m, the thermocline was formed from mid-May to early-September 2019 and the other periods were weakly stratified or mixed. The thickness of the thermocline was developed until 4.7 m and the depth of the thermocline was formed at a depth of 3 - 6 m at the front of the Paldang Reservoir. During the formation of the thermocline, the Namhangang and Gyeongancheon tributaries with relatively high water temperature (low-density) flowed into the upper layer of the reservoir, and the Bukhangang tributary with low water temperature (high-density) mainly affected the lower layer of the reservoir. This is because the density currents were formed due to the difference in the water temperature of the tributaries. The findings of this study may be used for constructing high-frequency monitoring and quantitative data analyses of reservoirs.

Recent PV PCS Technology (국내외 PV PCS 기술현황)

  • Choi Ju-Yeop;You Gwon-Jon;Jeong Young-Seok;So Jeong-Hoon;Choy Ick
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.117-122
    • /
    • 2005
  • This paper proposes an inverter for the grid-connected photovoltaic system based on the transformer-less inverter. This system consists of a high frequency converter bridge, high frequency transformer, diode bridge rectifiers, a DC filter, a low frequency inverter bridge, and an AC filter. The high frequency converter bridge switching at 20kHz is used to generate bipolar PWM pulse, and the high frequency transformer raise its voltage twice, which is subsequently rectified by diode bridge rectifiers to result in a full-wave rectified sine wave. Finally, it is unfolded by a low frequency inverter bridge to result in a 60Hz sine wave power output. Even though the high frequency link system needs more power semiconductors, a reduced size, light weight, and saved parts cost make this system more comparative than the other systems due to elimination of 60Hz transformer.

  • PDF

Analysis of acoustic emission signals during fatigue testing of a M36 bolt using the Hilbert-Huang spectrum

  • Leaman, Felix;Herz, Aljoscha;Brinnel, Victoria;Baltes, Ralph;Clausen, Elisabeth
    • Structural Monitoring and Maintenance
    • /
    • v.7 no.1
    • /
    • pp.13-25
    • /
    • 2020
  • One of the most important aspects in structural health monitoring is the detection of fatigue damage. Structural components such as heavy-duty bolts work under high dynamic loads, and thus are prone to accumulate fatigue damage and cracks may originate. Those heavy-duty bolts are used, for example, in wind power generation and mining equipment. Therefore, the investigation of new and more effective monitoring technologies attracts a great interest. In this study the acoustic emission (AE) technology was employed to detect incipient damage during fatigue testing of a M36 bolt. Initial results showed that the AE signals have a high level of background noise due to how the load is applied by the fatigue testing machine. Thus, an advanced signal processing method in the time-frequency domain, the Hilbert-Huang Spectrum (HHS), was applied to reveal AE components buried in background noise in form of high-frequency peaks that can be associated with damage progression. Accordingly, the main contribution of the present study is providing insights regarding the detection of incipient damage during fatigue testing using AE signals and providing recommendations for further research.