• Title/Summary/Keyword: high frequency gain

Search Result 821, Processing Time 0.031 seconds

A 1.5V CMOS High Frequency Operational Amplifier for High Frequency Signal Processing Systems. (고주파 신호처리 시스템을 위한 1.5V CMOS 고주파 연산증폭기)

  • 박광민;김은성;김두용
    • Proceedings of the IEEK Conference
    • /
    • 2003.07b
    • /
    • pp.1117-1120
    • /
    • 2003
  • In this paper, a 1.5V CMOS high frequency operational amplifier for high frequency signal processing systems is presented. For obtaining the high gain and the high unity gain frequency with the 1.5V supply voltage, the op-amp is designed with simple two stages which are consisting of the rail-to-rail differential input stage and the class-AB output stage. The designed op-amp operates with the 1.5V supply voltage, and shows well the push-pull class-AB operation. The simulation results show the DC open loop gain of 77dB and the unity gain frequency of 100MHz for the 1㏁ ┃ 10pF load. When the resistive load R$_1$. is varied from 1㏁ to 1 ㏀, the DC open loop gain decreases by only 4dB.

  • PDF

Design of Wideband High Gain Trapezoidal Monopole Antenna using Backside Frequency Selective Surface (후면 주파수 선택 표면을 이용한 광대역 고이득 평면 사다리꼴 모노폴 안테나 설계)

  • Hong, Seungmo
    • The Journal of Korea Institute of Information, Electronics, and Communication Technology
    • /
    • v.14 no.6
    • /
    • pp.473-478
    • /
    • 2021
  • This paper designed a wideband, high gain planar trapezoidal monopole antenna using backside frequency selective surface (FSS) according to the need for wideband and high gain antenna required in various fields such as rapidly increasing wireless communication, autonomous vehicles, 5G wireless communication and wideband applications. The proposed antenna uses a dual metallic to have a structural difference from the existing FSS. By solving the complexity of the design antenna using genetic algorithms (GA) and high frequency structural simulators (HFSS) simulations, the proposed antenna is not only produce a high efficiency but also presents a wide bandwidth of 3.52 to 5.92 GHz and a gain of 10.5 dBi over the entire bandwidth, with the highest gain of 11.8 dBi at 5.1 GHz. It has been confirmed that the gain increased 8.6 dBi as the 36% impedance bandwidth of 1.8 GHz compared to the existing antenna improved to the 50% impedance bandwidth of 2.4 GHz.

A 1.5 V High-Cain High-Frequency CMOS Complementary Operational Amplifier

  • Park, Kwangmin
    • Transactions on Electrical and Electronic Materials
    • /
    • v.2 no.4
    • /
    • pp.1-6
    • /
    • 2001
  • In this paper, a 1.5 V high-gain high-frequency CMOS complementary operational amplifier is presented. The input stage of op-amp is designed for supporting the constant transconductance on the Input stage by consisting of the parallel-connected rail-to-rail complementary differential pairs. And consisting of the class-AB rail-to-rail output stage using the concept of elementary shunt stage and the grounded-gate cascode compensation technique for improving the low PSRR which was a disadvantage in the general CMOS complementary input stage, the load dependence of open loop gain and the stability of op- amp on the output load are improved, and the high-gain high-frequency operation can be achieved. The designed op-amp operates perfectly on the complementary mode with the 180° phase conversion for a 1.5 V supply voltage, and shows the DC open loop gain of 84 dB, the phase margin of 65°, and the unity gain frequency of 20 MHz. In addition, the amplifier shows the 0.1 % settling time of .179 ㎲ for the positive step and 0.154 ㎲ for the negative step on the 100 mV small-signal step, respectively, and shows the total power dissipation of 8.93 mW.

  • PDF

Design of High-Gain OP AMP Input Stage Using GaAs MESFETs (갈륨비소 MESFET를 이용한 고이득 연산 증폭기의 입력단 설계)

  • 김학선;김은노;이형재
    • The Journal of Korean Institute of Communications and Information Sciences
    • /
    • v.17 no.1
    • /
    • pp.68-79
    • /
    • 1992
  • In the high speed analog system satellite communication system, video signal processing and optical fiber interface circuits, GaAs high gain operational amplifier is advantageous due to obtain a high gain because of its low transconductance and other drawbacks, such as low frequency dispersion and process variation. Therefore in this paper, a circuit techniques for improving the voltage gain for GaAs MESFET amplifier is presented. Also, various types of existing current mirror and current mirror proposed are compared.To obtain the high differential gain, bootstrap gain enhancement technique is used and common mode feedback is employed in differential amplifier.The simulation results show that gain is higher than that of basic amplifier about 18.6dB, and stability and frequency performance of differential amplifier are much improved.

  • PDF

A Study on the Optimum Design of Balanced CMOS Complementary Folded Cascode OP-AMP (Balanced CMOS Complementary Folded Cascode OP-AMP의 최적설계에 관한 연구)

  • Woo, Young-Shin;Bae, Won-Il;Choi, Jae-Wook;Sung, Man-Young
    • Proceedings of the KIEE Conference
    • /
    • 1995.07c
    • /
    • pp.1108-1110
    • /
    • 1995
  • This paper presents a balanced CMOS complementary folded cascode OP-AMP topology that achieves improved DC gain using the gain boosting technique, a high unity-gain frequency and improved slew rate using the CMOS complementary cascode structure and a high PSRR using the balanced output stage. Bode-plot measurements of a balanced CMOS complementary folded cascode OP-AMP show a DC gain of 80dB, a unity-gain frequency of 110MHz and a slew rate of $274V/{\mu}s$(1pF load). This balanced CMOS complementary folded cascode OP-AMP is well suited for high frequency analog signal processing applications.

  • PDF

26GHz 40nm CMOS Wideband Variable Gain Amplifier Design for Automotive Radar (차량용 레이더를 위한 26GHz 40nm CMOS 광대역 가변 이득 증폭기 설계)

  • Choi, Han-Woong;Choi, Sun-Kyu;Lee, Eun-Gyu;Lee, Jae-Eun;Lim, Jeong-Taek;Lee, Kyeong-Kyeok;Song, Jae-Hyeok;Kim, Sang-Hyo;Kim, Choul-Young
    • Journal of IKEEE
    • /
    • v.22 no.2
    • /
    • pp.408-412
    • /
    • 2018
  • In this paper, a 26GHz variable gain amplifier fabricated using a 40nm CMOS process is studied. In the case of an automobile radar using 79 GHz, it is advantageous in designing and driving to drive down to a low frequency band or to use a low frequency band before up conversion rather than designing and matching the entire circuit to 79 GHz in terms of frequency characteristics. In the case of a Phased Array System that uses time delay through TTD (True Time Delay) in practice, down conversion to a lower frequency is advantageous in realizing a real time delay and reducing errors. For a VGA (Variable Gain Amplifier) operating in the 26GHz frequency band that is 1/3 of the frequency of 79GHz, VDD : 1V, Bias 0.95V, S11 is designed to be <-9.8dB (Mea. High gain mode) and S22 < (Mea. high gain mode), Gain: 2.69dB (Mea. high gain mode), and P1dB: -15 dBm (Mea. high gain mode). In low gain mode, S11 is <-3.3dB (Mea. Low gain mode), S22 <-8.6dB (Mea. low gain mode), Gain: 0dB (Mea. low gain mode), P1dB: -21dBm (Mea. Low gain mode).

High Q High Gain VHF Active Filters and Their Application to FM Receivers (고Q고이득 VHF 능동필터와 그 FM 수신기에의 응용)

  • 박송배
    • Journal of the Korean Institute of Telematics and Electronics
    • /
    • v.9 no.5
    • /
    • pp.27-33
    • /
    • 1972
  • This paper describes the computer-aided design, fabrication and performance of high Q and high gain active filters suitable for microminiaturization in the frequency range of 10-800MHz, based on the negative resistance operation of a transistor. 48 as high as 1000 and a transducer gain as high as 35dB can readily be obtained with a single-transistor amplifier and with an inductance as small as a few nH at higher frequencies and 150 nH at lower frequencies in tile above frequency range. The gain of the proposed active filter can be stoabilized within $\pm$ 1.5 dB over the temperature range -1$0^{\circ}C$ to +5$0^{\circ}C$ and the temperature dependence of the center frequency is tapicalla 50ppm/$^{\circ}C$. An experimental FM receiver utilizing these fitters and operating at a carrier frequency of 92 MH3 was built. The whole circuit was fabricated on eight alumina substrates of by the thick-film hybrid IC technique and the coils are constructed, for miniaturization, in a spiral form of 3 or 4 turns of enamel copper wire with an overall diameter of about 5mm. The test results are also reported in this paper.

  • PDF

Power Smoothing of a Variable-Speed Wind Turbine Generator Based on the Rotor Speed-Dependent Gain (회전자 속도에 따라 변하는 게인에 기반한 가변속 풍력발전기 출력 평활화)

  • Kim, Yeonhee;Kang, Yong Cheol
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.4
    • /
    • pp.533-538
    • /
    • 2016
  • In a power grid that has a high penetration of wind power, the highly-fluctuating output power of wind turbine generators (WTGs) adversely impacts the power quality in terms of the system frequency. This paper proposes a power smoothing scheme of a variable-speed WTG that can smooth its fluctuating output power caused by varying wind speeds, thereby improving system frequency regulation. To achieve this, an additional loop relying on the frequency deviation that operates in association with the maximum power point tracking control loop, is proposed; its control gain is modified with the rotor speed. For a low rotor speed, to ensure the stable operation of a WTG, the gain is set to be proportional to the square of the rotor speed. For a high rotor speed, to improve the power smoothing capability, the control gain is set to be proportional to the cube of the rotor speed. The performance of the proposed scheme is investigated under varying wind speeds for the IEEE 14-bus system using an EMTP-RV simulator. The simulation results indicate that the proposed scheme can mitigate the output power fluctuation of WTGs caused by varying wind speeds by adjusting the control gain depending on the rotor speed, thereby supporting system frequency regulation.

Design of High Frequency Boosting Circuits Compensating for Hearing Loss (청력 보정을 위한 고주파 증폭 회로 설계)

  • Lee, Kwang;Jung, Young-Jin
    • Journal of the Institute of Electronics and Information Engineers
    • /
    • v.54 no.3
    • /
    • pp.138-144
    • /
    • 2017
  • In this paper, we propose a high frequency boosting circuits compensating for age-related hearing loss. The frequency response of this hearing loss is quite similar to that of a low-pass filter of which the critical frequency get lower with age. Therefore the voltage gain of this compensation circuits increase proportionally to the frequency of signals when the frequency is higher than the critical frequency and the voltage is constant irrespective of the frequency of signals when the frequency is lower than the critical frequency. The proposed circuits consist of a differential circuit and a unity gain amplifier. Because the critical frequency of the proposed circuits is controlled simply in the shape of a volume control lever, the aged people can adjust the high frequency boosting level easily according to one's hearing loss level. The critical frequency is continuously controllable in the whole audible frequency band and the gain of this high frequency boosting circuits is above 80dB at 10kHz.

Experimental Evaluation of Frequency Characteristics of Gain-saturated EDFA for Suppression of Signal Fluctuation in Terrestrial Free-space Optical Communication Systems

  • Yoo Seok, Jeong;Chul Han, Kim
    • Current Optics and Photonics
    • /
    • v.7 no.1
    • /
    • pp.28-32
    • /
    • 2023
  • Frequency characteristics of gain-saturated erbium-doped fiber amplifier (EDFA) are experimentally evaluated to mitigate the optical signal fluctuation induced by atmospheric turbulence in terrestrial freespace optical communication systems. Here, an acousto-optic modulator (AOM) is used to emulate optical signal fluctuations induced by atmospheric turbulence. The waveform which is generated in proportion to the refractive-index structural parameters is used to drive the AOM at various periodic frequencies. Thus, the dependence of the signal fluctuation suppression on the frequency is evaluated. The experiment is conducted using a periodic frequency sweep of the AOM driving voltage waveform and signal input power variation of the amplifier. It is observed that a low periodic frequency and high input signal power effectively suppress the optical signal fluctuation. This study evaluates the experimental results from the high-pass filter and gain-saturation characteristics of the EDFA.