• Title/Summary/Keyword: high fluidity mortar

Search Result 85, Processing Time 0.02 seconds

A Study on Properties of the High-Strength Concrete Admixed with II-Anhydrite and Pozzolanic Fine Power (불산부생 II 형 무수석고와 포졸란 미분체가 혼입된 고강도콘크리트의 특성에 관한 연구)

  • 조민형;길배수;전진환;김도수;남재현;노재성
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1997.04a
    • /
    • pp.136-145
    • /
    • 1997
  • The purpose of this study is to develope of alternative adimixture for manufacture of PHC pile(compressive strength above 800kg/$\textrm{cm}^2$). For the investigation, properties of alternative admixture admixed with II-anhydrite and pozollanic fine powders(e.q., Fly-ash, Silica-Fume), the fluidity and viscosity in the cement pastes, the fluidity and compressive strength in mortars at steam curing condition, were respectively examined. Also, properties of compressive strength of concretes with exiting admixture(specimen name SM) and alterantive admixture(specimen name AP) for PHC pile, at steam and standard curing condition, were compared each other. As a result of this experimental study, it was found that specimens admixed with II-anhydrite and pozollanic fine powders had an increase on the fluidity of cement paste and mortar, and compressive strength of mortar and concrete was as good as concrete with SM.

  • PDF

Influence of Limestone Powder on the Hydration of Cement Contained much Chloride (석회석 미분말이 염소고함유시멘트의 수화반응에 미치는 영향)

  • Jeong, Chan-Il;Lee, Eui-Hak;Lee, Kyung-Hee
    • Journal of the Korean Ceramic Society
    • /
    • v.43 no.9 s.292
    • /
    • pp.537-543
    • /
    • 2006
  • Length change, hydration heat, setting time and compressive strength of OPC were measured by adding KCl and replacing limestone powder so as to examine the influence of limestone powder on hydration of the OPC contained much chloride. In general, the chloride modified cement was high in heat of hydration, short in its setting time, low in its fluidity and low in its strength at 28 days due to the sudden hydration in its initial stage. As a result of the experiment, it has been demonstrated that heat of hydration, became low as one replaced limestone powder to the chloride modified cement, and the fluidity and shrinkage rate of mortar decreased without change in setting time; furthermore, the compressive strength at 28 days was improved.

Strength Properties of High-Fluidity Polymer-Modified Mortar (고유동 폴리머 시멘트 모르타르의 강도 특성)

  • Joo, Myung-Ki;Lee, Youn-Su;Chung, In-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.312-315
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the strength of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the flexural and tensile strengths of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to increase with increasing polymer-cement ratio, and tend to decrease with increasing shrinkage-reducing agent content, regardless of the antifoamer content. However, the compressive strength of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Drying Shrinkage of High-Fluidity Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지를 혼입한 고유동 폴리머 시멘트 모르타르의 건조수축)

  • Lee, Youn-Su;Joo, Myung-Ki;Chung, In-Soo
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2004.05a
    • /
    • pp.296-299
    • /
    • 2004
  • The effects of polymer-cement ratio, antifoamer content and shrinkage-reducing agent content on the setting time and drying shrinkage of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As a result, the setting time of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to delayed with increasing polymer-cement ratio, regardless of the antifoamer conten,. Irrespective of the antifoamer content, the drying shrinkage of the high-fluidity polymer-modified mortars using redispersible polymer powder tend to decrease with increasing polymer-cement ratio and shrinkage-reducing agent content.

  • PDF

Properties of Undispersed Underwater Mortar Using the Expansive Additives and Fly Ash (팽창재 및 플라이애쉬를 이용하는 수중불분리 모르터의 특성)

  • 한천구;이대주;이광설;한일영;권지훈;유홍종
    • Magazine of the Korea Concrete Institute
    • /
    • v.10 no.6
    • /
    • pp.223-231
    • /
    • 1998
  • Existing cast in place piles made by grouting cement mortar have many problems that cracks by autogeneous and drying shrinkage bring about the deterioration of force for piles, segregations by the submersion of ground water occur and also, high cement contents lead to rise the manufacturing cost. Therefore, this study is intended to investigate the mechanical properties of high performance mortar, incorporating expansive additives and fly ash. for cast in place piles. According to the experimental results, as the contents of expansive additives increase in mortar mixture, fluidity decrease and air contents shows inverse tendency. Setting time is delayed. Although compressive strength at 7days shows a decline tendency. compressive strength at 28days and 91days increase slightly with 5% of expansive additives. As fly ash increase in mortar mixture, high fluidity is shown, air contents increase and setting time is delayed at fresh state, and additives are, the larger length change is, whereas shrinkage decrease with the increase of fly ash.

An Analysis on the Properties of Undispersed Underwater Mortar for Augered Pile with Fly-ash (플라이애쉬 치환율 변화에 따른 오거파일용 수중불분리 모르터의 특성 분석)

  • 이대주;이광설;유홍종;권지훈;한일영;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1998.04a
    • /
    • pp.261-266
    • /
    • 1998
  • The purpose of this study is to present the reference data on the development of undispersed underwater mortar for augered pile under various replacement ratio of fly-ash. According to the experimental results, when 10% of fly-ash is mixed under mix proportion of 1:1.5(c:s), as strength and shrinkage decrease slightly, whereas fluidity increase, high quality mortar for augered pile can be achieve in case above condition is applied.

  • PDF

Influences of Quality of Aggregate on the Properties of Cement Mortars in Floors Using Expansion Agent (팽창재를 사용한 바닥 모르타르의 특성에 미치는 골재품질의 영향)

  • 송명신;표대수;정성철;홍상희;한천구
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2000.10b
    • /
    • pp.929-932
    • /
    • 2000
  • In this paper, physical properties of fresh and hardened mortar for floor using expansion agent are described under various grain shape, grading and chloride contents of aggregates. According to experimental results, as fineness modulous increase, fluidity show high it also shows high with cement mortar using riversand and continuous distribution of grading. We can not detect any difference in fluidity according to chloride contents. Air content shows to be decreased with crushed stone having large fineness modulous and continuous distribute on of grading. chloride content does not influence on the air content. compressive strength tends to increase when crushed sand with continuous distribution of grading is used and chloride contents decreases.

Durability of High-fluidity Polymer-Modified Mortar Using Redispersible Polymer Powder (재유화형 분말수지 혼입 고유동 폴리머 시멘트 모르타르의 내구성)

  • Joo Myung-Ki;Lee Youn-Su;Youn Do-Yong;Jung In-Su
    • Journal of the Korea Concrete Institute
    • /
    • v.17 no.5 s.89
    • /
    • pp.703-708
    • /
    • 2005
  • The effects of polymer-cement ratio and antifoamer content on the setting time and durability of high-fluidity polymer-modified mortars using redispersible polymer powder are examined. As the result, the setting time of the polymer-modified mortars using redispersible polymer powder tends to be delayed with increasing polymer-cement ratio, regardless of the antifoamer content. The water absorption, chloride ion penetration depth and carbonation depth of the high-fluidity polymer-modified mortars using redispersible polymer powder decrease with increasing polymer-cement ratio and antifoamer content. The resistance of freezing and thawing and chemicals improvement is attributed to the improved bond between cement hydrates and aggregates because of the incorporation of redispersible polymer powder

An Experimental Study on the Quality Estimation of the Mortar using High-Quality Recycled Sand Producted from the Manufacturing System by Wet Gravity Separation (습식비중분리시스템에서 생산된 고품질 순환모래를 사용한 모르타르의 품질평가에 관한 실험적 연구)

  • Lee, Ji-Hwan;Rho, Hyoung-Nam;Lee, Jong-suk;Lee, Sang-Soo;Song, Ha-Young
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.05a
    • /
    • pp.103-107
    • /
    • 2008
  • This study was to execute the experiment for analyzing the quality characteristics of mortar by type of recycled sand by using the recycled sand produced by the manufacturing system by wet gravity separation in order to develop the removal device of impurities for the production of high-quality recycled sand. As a result, this study has sown that the mortar using the high-quality recycled sand through the manufacturing system by wet gravity separation in the fluidity property, strength property, and shrinkage property largely, compared with the mortar using low-quality recycled sand that not passed the device of sand flux. There was a tendency similar to the plane mortar. In conclusion, it was considered as various quality performances of the recycled sand were improved through the production stage of prototype.

  • PDF

A Study on the Fluidity Properties and Strength Properties of Non-sintered Hwangtoh mixed with PVA Fiber (PVA섬유를 혼입한 비소성 황토 콘크리트의 유동특성 및 강도특성에 관한 연구)

  • Lee, Sang-Soo
    • Journal of the Korea Institute of Building Construction
    • /
    • v.10 no.3
    • /
    • pp.49-56
    • /
    • 2010
  • The purpose of this study is to examine the effect of variations in the mix rate of PVA fiber and the replacement ratio of non-sintering Hwangtoh on non-sintering Hwangtoh mortar and concrete mixed with PVA fiber. For water to binder ratio, mortar and concrete were both 50%, and PVA fiber mix rate was 0% and 0.3%. The replacement ratio of non-sintering Hwangtoh was 0, 25, 50 and 75(%) for mortar, and 0, 15, 30 and 50(%) for concrete. The properties of the mortar and concrete were compared and analyzed in 4 different levels, and the results can be summarized as follows. The replacement ratio of 30% of the non-sintering Hwangtoh, and the PVA fiber mix rate of 0.3% is determined to result in concrete of high quality, including strength and fluidity, and crack control by plastic shrinkage.