• 제목/요약/키워드: high energy density fuel

검색결과 312건 처리시간 0.033초

운전조건에 따른 고분자 직접메탄올 연료전지 성능 특성 (Performance Characterization of Polymer Electrolyte Membrane Direct Methanol Fuel Cell on the Various Operation Conditions)

  • 정두환;이창형;신동열
    • 대한전기학회:학술대회논문집
    • /
    • 대한전기학회 1996년도 하계학술대회 논문집 C
    • /
    • pp.1409-1411
    • /
    • 1996
  • Direct Methanol Fuel Cell(DMFC) using Pt-Ru electrocatlayst and Nafion menbrane can provide high performance if operating conditions are well designed. In this study, operating temperature, pressure, and fuel flow rate were changed to obtain optimum operating conditions of DHFC single cell. Performance of DMFC were increased by the increase of operating temperature. The concentration of fuel methanol was 2.0M $CH_{3}OH$ and pressure difference of cathode and anode was 2 atm were showed maximum performance of DMFC single cell with showing the current density of 160 $mA/cm^2$ at 0.2V cell voltage.

  • PDF

Enhancing Factors of Electricity Generation in a Microbial Fuel Cell Using Geobacter sulfurreducens

  • Kim, Mi-Sun;Cha, Jaehwan;Kim, Dong-Hoon
    • Journal of Microbiology and Biotechnology
    • /
    • 제22권10호
    • /
    • pp.1395-1400
    • /
    • 2012
  • In this study, we investigated various cultural and operational factors to enhance electricity generation in a microbial fuel cell (MFC) using Geobacter sulfurreducens. The pure culture of G. sulfurreducens was cultivated using various substrates including acetate, malate, succinate, and butyrate, with fumarate as an electron acceptor. Cell growth was observed only in acetate-fed medium, when the cell concentrations increased 4-fold for 3 days. A high acetate concentration suppressed electricity generation. As the acetate concentration was increased from 5 to 20 mM, the power density dropped from 16 to $13mW/m^2$, whereas the coulombic efficiency (CE) declined by about half. The immobilization of G. sulfurreducens on the anode considerably reduced the enrichment period from 15 to 7 days. Using argon gas to create an anaerobic condition in the anode chamber led to increased pH, and electricity generation subsequently dropped. When the plain carbon paper cathode was replaced by Pt-coated carbon paper (0.5 mg $Pt/cm^2$), the CE increased greatly from 39% to 83%.

무인 항공기용 연료 전지 동력 시스템 개발 (Development of Fuel Cell Power System for Unmanned Aerial Vehicle)

  • 김태규;심현철;권세진
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2007년도 제28회 춘계학술대회논문집
    • /
    • pp.87-90
    • /
    • 2007
  • 장기 체공 무인 항공기를 위한 연료 전지 동력 시스템을 개발하였다. 기존의 고압 수소 저장 방식의 문제점을 해결하기 위해 높은 에너지 밀도를 갖는 액상의 화학 수소화물을 연료로 사용하였다. 수소화물을 전환하여 수소를 발생하는 연료 공급 장치는 촉매 반응기, 펌프, 연료 카트리지, 분리기, 제어기로 구성되어 있으며, 전력을 발생하기 위한 연료전지 스택과 함께 연료 전지 동력 시스템을 무인 항공기에 탑재하였다. 연료 전지 동력 시스템을 무인 항공기에 적용하기 위한 성능 검증을 수행하였다.

  • PDF

강제대류 열전달을 이용한 형상기억합금 작동기 (Forced Convection heated and cooled SMA(Shape Memory Alloy) Actuator)

  • 전형열;김정훈;박응식
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2005년도 춘계 학술대회논문집
    • /
    • pp.100-103
    • /
    • 2005
  • This work discusses the numerical analysis, the design and experimental test of the SMA (Shape Memory Alloy) actuator along with its capabilities and limitations. Convection heating and cooling using water actuate the SMA element of the actuator. The fuel such as propane, having a high energy density, is used as the energy source for the SMA actuator in order to increase power and energy density of the system, and thus in order to obviate the need for electrical power supplies such as batteries. The system is composed of a pump, valves, bellows, a heater (burner), control unit and a displacement amplification device. The actuation frequency is compared with the prediction obtained from numerical analysis. For the designed SMA actuator system, the results of numerical analysis were utilized in determining design parameters and operating conditions.

  • PDF

고온형 고분자전해질 연료전지의 준3차원 모델링을 통한 국부적 동특성 해석에 관한 연구 (A Study on the Local Dynamic Characteristics of High Temperature Proton Exchange Membrane Fuel Cell by Quasi-three-dimensional Model)

  • 박재만;민경덕;강상규
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 한국신재생에너지학회 2011년도 추계학술대회 초록집
    • /
    • pp.81.1-81.1
    • /
    • 2011
  • High temperature proton exchange membrane fuel cell (HT-PEMFC) has been regarded as a promising clean energy sources. In this study, a quasi-three-dimensional dynamic model of HT-PEMFC has been developed and the local dynamic characteristics are investigated. The model has the geometrical simplification of 2+1D reduction (quasi-3D). The one-dimensional model consists of nine control volumes in cross-sectional direction to solve the energy conservation and the species conservation equations. Then, the one-dimensional model is discretized into 25 local sections along the gas flow direction to account for gas and thermal transport in channels. With this discretization, the local characteristics of HT-PEMFC such as species conservation, temperature, and current density can be captured. In order to study the basic characteristics of HT-PEMFC, it is important to investigate the local dynamic characteristics. Thus, the model is simulated at various operating conditions and the local dynamic characteristics related to them are observed. The model is useful to investigate the distribution of HT-PEMFC characteristics and the physical phenomena in HT-PEMFC.

  • PDF

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.

공기공급 조건이 스택성능에 미치는 영향 (The effect of PEMFC stack performance at air supply condition)

  • 박창권;오병수
    • 한국수소및신에너지학회논문집
    • /
    • 제19권3호
    • /
    • pp.232-238
    • /
    • 2008
  • Research has been proceeded on fuel cell which is fueled by hydrogen. Polymer electrolyte membrane fuel cell (PEMFC) is promising power source due to high power density, simple construction and operation at low temperature. But it has problems such as high cost, temperature dependent performance. These problems could be solved by experiment which is useful for analysis and optimization of fuel cell performance and heat management. In this paper, when hydrogen flows constantly at the stoichiometry of ${\xi}=1.6$, the performance of the fuel cell stack was increased and the voltage difference between each cells was decreased according to the increase of air stoichiometry by 2.0, 2.5, 3.0. Therefore, the control of air flow rate in the same gas channel is important to get higher performance. Purpose of this research is to expect operation temperature, flow rate, performance and mass transportation through experiment and to help actual manufacture of PEM fuel cell stack.

GTL연료의 배출가스 특성 연구 (The Characteristics of Exhaust Gas Emissions with GTL Fuel)

  • 곽순철;서충열;강대일;박정민;임윤성;황춘식;엄명도;김종춘;이영재;표영덕;정충섭;장은정
    • 한국자동차공학회논문집
    • /
    • 제15권6호
    • /
    • pp.17-22
    • /
    • 2007
  • GTL(Gas-to-Liquids) fuel technology was converted from the natural gas, coal and biomass into the diesel or kerosene by Fisher-Tropsch synthesis. GTL fuel have very good merits on high cetane number, low density, free sulfur, lower aromatics contents and no poly-aromatic hydrocarbons as well as the autoignition characteristics. These physical properties make it valuable as a diesel fuel with lower emissions than the conventional diesel fuel. Furthermore, GTL fuel can be use not to the engine any modification. Therefore, to evaluate emissions of GTL fuel, the tested diesel vehicles were fueled on blends of GTL fuel/ultra low sulfur diesel fuel(ULSD). And then, we found out that GTL fuel reduced regulated emissions(CO, NOx, HC, PM) compare with conventional diesel fuel.

CERAMOGRAPHY ANALYSIS OF MOX FUEL RODS AFTER AN IRRADIATION TEST

  • Kim, Han-Soo;Jong, Chang-Yong;Lee, Byung-Ho;Oh, Jae-Yong;Koo, Yang-Hyun
    • Nuclear Engineering and Technology
    • /
    • 제42권5호
    • /
    • pp.576-581
    • /
    • 2010
  • KAERI (Korea Atomic Energy Research Institute) fabricated MOX (Mixed Oxide) fuel pellets as a cooperation project with PSI (Paul Scherrer Institut) for an irradiation test in the Halden reactor. The MOX pellets were fitted into fuel rods that included instrumentation for measurement in IFE (Institutt for Energiteknikk). The fuel rods were assembled into the test rig and irradiated in the Halden reactor up to 50 MWd/kgHM. The irradiated fuel rods were transported to the IFE, where ceramography was carried out. The fuel rods were cut transversely at the relatively higher burn-up locations and then the radial cross sections were observed. Micrographs were analyzed using an image analysis program and grain sizes along the radial direction were measured by the linear intercept method. Radial cracks in the irradiated MOX were observed that were generally circumferentially closed at the pellet periphery and open in the hot central region. A circumferential crack was formed along the boundary between the dark central and the outer regions. The inner surface of the cladding was covered with an oxide layer. Pu-rich spots were observed in the outer region of the fuel pellets. The spots were surrounded by many small pores and contained some big pores inside. Metallic fission product precipitates were observed mainly in the central region and in the inside of the Pu spots. The average areal fractions of the metallic precipitates at the radial cross section were 0.41% for rod 6 and 0.32% for rod 3. In the periphery, pore density smaller than 2 ${\mu}m$ was higher than that of the other regions. The grain growth occurred from 10 ${\mu}m$ to 12 ${\mu}m$ in the central region of rod 6 during irradiation.

Fuel Cell Powered UAV with NaBH4 as a Hydrogen Source

  • Kim, Tae-Gyu;Shim, Hyun-Chul;Kwon, Se-Jin
    • 한국추진공학회:학술대회논문집
    • /
    • 한국추진공학회 2008년 영문 학술대회
    • /
    • pp.579-582
    • /
    • 2008
  • PEM Fuel cell system was designed and constructed to use as a power source of unmanned aerial vehicles(UAV) in the present study. Sodium borohydride was selected as a hydrogen source and was decomposed by catalytic hydrolysis reaction. Fuel cell system consists of a fuel cell stack, a hydrogen generation system(HGS), and power management system(PMS). HGS was composed of a catalytic reactor, micropump, fuel cartridge, and separator. Hybrid power system between lithium-polymer battery and fuel cell was developed. The fuel cell system was integrated and packaged into a blended wing-body UAV. Energy density of the total system was 1,000 $W{\cdot}hr/kg$ and high endurance more than 5 hours was accomplished in the ground tests.

  • PDF