• 제목/요약/키워드: high efficiency particulate air filter test

검색결과 6건 처리시간 0.018초

PLS 및 복합 나노구체를 이용한 HEPA 필터 시험 (HEPA Filter Tests Using PLS and Composite Nanospheres)

  • 황민진;성동찬;문희
    • 공업화학
    • /
    • 제24권4호
    • /
    • pp.357-362
    • /
    • 2013
  • High efficiency particulate air (HEPA) 필터를 시험하기 위하여 단분산 polystyrene latex spheres (PLS) 및 PS-MPS/실리카복합 나노구체가 이용되었다. 사용된 모든 나노구체들은 필터시험 전에 평균입경과 변동계수 값을 측정하여 시험용 인조먼지로서 적정함을 평가하였다. PLS 및 복합 나노구체의 입경은 유화중합 중 반응온도와 안정제의 양을 조절하여 100~300 nm 범위에서 잘 조절되었으며, 변동계수의 경우도 단분산 입자분포로 판단되는 15%보다 낮은 3~7% 범위이었다. 한편 HEPA 필터시험 결과는 사용된 모든 나노구체들이 공기필터의 시험을 위한 시험용 인조먼지로서 아주 적절함을 보여주었다.

환기장치와 필터를 활용한 미세먼지 제거특성 조사 (Characterization of Fine Dust Collection Using a Filter Ventilation)

  • 전태영;김재용
    • 공업화학
    • /
    • 제26권2호
    • /
    • pp.229-233
    • /
    • 2015
  • 본 연구에서는 폐암을 유발하는 발암물질이며 다양한 문제의 원인이 되고 있는 유해물질인 미세먼지 제거특성을 조사하였다. 변수로는 습도, 초기미세먼지 주입량, 유속을 고려하였다. 실험결과 습도가 높은 경우 제거에 소요되는 시간동안 평균 농도는 낮아지지만, 최종농도에는 큰 차이가 없었다. 세 가지 초기미세먼지주입량의 변화는 모두 비슷한 제거경향을 나타내었다. 또한 유속이 0.6 m/s에서 0.3 m/s로 변할 경우 제거소요시간이 약 1.4배 증가하는 결과가 관찰되었다. 본 연구에서는 습도, 미세먼지 주입량, 유속 중 미세먼지 제거에 가장 큰 변화를 보이는 것은 유속으로 관찰되었다.

고온 고압 집진을 위한 역세정 유동장의 특성에 관한 연구 (A Study on the Reverse Cleaning Flow Characteristics for High Temperature and High Pressure Filtration)

  • 김장우;정진도;김은권
    • 한국대기환경학회지
    • /
    • 제19권1호
    • /
    • pp.25-31
    • /
    • 2003
  • Ceramic filter has been demonstrated as an attractive system to improve the thermal efficiency and to reduce the effluent pollutants. Removal of particulates from the hot gas stream is very important in air pollution control. In particular, the elimination of the particulate matters discharged from a gas turbine at high temperature can prevent the corrosion inside the IGCC. In this study, a Lab. scale test and numerical simulation were carried out to comprehend the relationship between pulse jet pressure and recovery of pressure drop and to characterize the reverse cleaning flow through a ceramic fil-ter element under high temperature and high pressure. When the pulse-jet pressures were 2, 3 and 4 kg/$ extrm{cm}^2$, the cleaning effect increase of about 10~30% by recovery of pressure drop caused by pulse pressure. Cleaning effect at 45$0^{\circ}C$ was greater than that at 55$0^{\circ}C$ or 650$^{\circ}$ for the same pulse pressure. According to the result of the present simulation, high pressure has been formed in terminal and central regions in our models and temperature distribution caused by pulse air is to be uniform comparatively on inner surface of filter.

CuO/3Al$_2$O$_3$ㆍ2SiO$_2$, 촉매담지 세라믹 캔들필터를 이용한 먼지/NOx/SOx/HCl 제거기술

  • 문수호;홍민선;이재춘;이동섭
    • 에너지공학
    • /
    • 제13권2호
    • /
    • pp.133-143
    • /
    • 2004
  • Simultaneous removal technology of particulate/NOx/SOx/HCl using CuO/3Al$_2$O$_3$ㆍ2SiO$_2$catalyst impregnated ceramic candle filters is an advanced air pollution process and provides significantly to reduce hazardous gases emitted from coal-fired power plant. This process uses a high-temperature catalytic filter for integrating SOx and HCl reduction through injection an alkali sorbent (such as hydrated lime or sodium bicarbonate), NOx removal through ammonia injection and selective catalytic reduction (SCR), and particulate collection on the catalytic filter surface. The advantages of the process include : compact integration of the emission control technologies into a single component; easy handling of dry sorbent and by-product; and improved SCR catalytic life due to lowered SOx, HCl and particulate levels. CuO/3Al$_2$O$_3$ㆍ2SiO$_2$ catalyst impregnated ceramic candle filters showed a possibility of simultaneous treatment from results which have ascertained high removal efficiency at various combined gases conditions, and in pilot plant test for 3 months, NO conversion was showed 90% over.

A study of improving filtration efficiency through SiC whisker synthesis on carbon felt by CVD VS method

  • 김광주;최두진
    • 한국진공학회:학술대회논문집
    • /
    • 한국진공학회 2016년도 제50회 동계 정기학술대회 초록집
    • /
    • pp.150-150
    • /
    • 2016
  • Mankind is enjoying a great convenience of their life by the rapid growth of secondary industry since the Industrial Revolution and it is possible due to the invention of huge power such as engine. The automobile which plays the important role of industrial development and human movement is powered by the Engine Module, and especially Diesel engine is widely used because of mechanical durability and energy efficiency. The main work mechanism of the Diesel engine is composed of inhalation of the organic material (coal, oil, etc.), combustion, explosion and exhaust Cycle process then the carbon compound emissions during the last exhaust process are essential which is known as the major causes of air pollution issues in recent years. In particular, COx, called carbon oxide compound which is composed of a very small size of the particles from several ten to hundred nano meter and they exist as a suspension in the atmosphere. These Diesel particles can be accumulated at the respiratory organs and cause many serious diseases. In order to compensate for the weak point of such a Diesel Engine, the DPF(Diesel Particulate Filter) post-cleaning equipment has been used and it mainly consists of ceramic materials(SiC, Cordierite etc) because of the necessity for the engine system durability on the exposure of high temperature, high pressure and chemical harsh environmental. Ceramic Material filter, but it remains a lot of problems yet, such as limitations of collecting very small particles below micro size, high cost due to difficulties of manufacturing process and low fuel consumption efficiency due to back pressure increase by the small pore structure. This study is to test the possibility of new structure by direct infiltration of SiC Whisker on Carbon felt as the next generation filter and this new filter is expected to improve the above various problems of the Ceramic DPF currently in use and reduction of the cost simultaneously. In this experiment, non-catalytic VS CVD (Vapor-Solid Chemical Vaporized Deposition) system was adopted to keep high mechanical properties of SiC and MTS (Methyl-Trichloro-Silane) gas used as source and H2 gas used as dilute gas. From this, the suitable whisker growth for high performance filter was observed depending on each deposition conditions change (input gas ratio, temperature, mass flow rate etc.).

  • PDF

소형 자동차 페인트 도장부스에서 발생하는 점착성 paint aerosol 처리장치에서 제거성능 (Removal Performance of Sticky Paint Aerosol Control System Generated from Small Scale Car Paint Overspray Booth)

  • 이재랑;;전성민;이강산;손종렬;박영옥
    • 한국대기환경학회지
    • /
    • 제31권1호
    • /
    • pp.54-62
    • /
    • 2015
  • Small scale paint overspray booths are being operated nationwidely, for repair of passenger car body parts. paint aerosols are emitted from the paint overspray booth in operations. In paint overspray booth operations without ventilation system and air pollutants collection unit, it may land on nearby equipment. In this study a removal of sticky paint aerosol for application of the small-scale overspray paint booth. it's cause the surface of filter bag from generated sticky paint aerosol. To remove adhesion of paint aerosol the agglomerating agents are injected and mixed with sticky paint aerosols prior to reach the filter bag. The paint spray rate was set as $10{\pm}5g/min$ from air-atomized spray guns in the spray booth, injection rate of agglomerating was $10{\pm}5g/min$ in the mixing chamber. The filtration velocity including air pollutants varied from 0.2 m/min to 0.4 m/min. Bag cleaning air pressure was set as $5.0kg_f/min$ for detaching dust cake from surface of filter bag. Bag cleaning interval at the filtration velocity of 0.2 m/min was around 3 times longer than that of the 0.4 m/min. The residual pressure drop maintained highest value at the highest filtration velocity. Fractional efficiency of 99.952%~99.971% was possible to maintain for the particle size of 2.5 microns. Total collection efficiency at the filtration velocity of 0.2 m/min was 99.42%. During this study we could confirm high collection efficiency and long cleaning intervals for the test with filtration velocity of 0.2 m/min indicating an optimal value for the given dimensions of the test unit and test operating conditions.