• Title/Summary/Keyword: high ductility

Search Result 983, Processing Time 0.031 seconds

Nonlinear FE modelling and parametric study on flexural performance of ECC beams

  • Kh, Hind M.;Ozakca, Mustafa;Ekmekyapar, Talha
    • Structural Engineering and Mechanics
    • /
    • 제62권1호
    • /
    • pp.21-31
    • /
    • 2017
  • Engineered Cementitious Composite (ECC) is a special class of the new generation of high performance fiber reinforced cementitious composites (HPFRCC) featuring high ductility with relatively low fiber content. In this research, the mechanical performance of ECC beams will be investigated with respect to the effect of slag and aggregate size and amount, by employing nonlinear finite element method. The validity of the models was verified with the experimental results of the ECC beams under monotonic loading. Based on the numerical analysis method, nonlinear parametric study was then conducted to evaluate the influence of the ECC aggregate content (AC), ECC compressive strength ($f_{ECC}$), maximum aggregate size ($D_{max}$) and slag amount (${\phi}$) parameters on the flexural stress, deflection, load and strain of ECC beams. The simulation results indicated that when increase the slag and aggregate size and content no definite trend in flexural strength is observed and the ductility of ECC is negatively influenced by the increase of slag and aggregate size and content. Also, the ECC beams revealed enhancement in terms of flexural stress, strain, and midspan deflection when compared with the reference beam (microsilica MSC), where, the average improvement percentage of the specimens were 61.55%, 725%, and 879%, respectively. These results are quite similar to that of the experimental results, which provides that the finite element model is in accordance with the desirable flexural behaviour of the ECC beams. Furthermore, the proposed models can be used to predict the flexural behaviour of ECC beams with great accuracy.

A numerical study on the seismic behavior of a composite shear wall

  • Naseri, Reza;Behfarnia, Kiachehr
    • Computers and Concrete
    • /
    • 제22권3호
    • /
    • pp.279-289
    • /
    • 2018
  • Shear walls are one of the important structural elements for bearing loads imposed on buildings due to winds and earthquakes. Composite shear walls with high lateral resistance, and high energy dissipation capacity are considered as a lateral load system in such buildings. In this paper, a composite shear wall consisting of steel faceplates, infill concrete and tie bars which tied steel faceplates together, and concrete filled steel tubular (CFST) as boundary columns, was modeled numerically. Test results were compared with the existing experimental results in order to validate the proposed numerical model. Then, the effects of some parameters on the behavior of the composite shear wall were studied; so, the diameter and spacing of tie bars, thickness and compressive strength of infill concrete, thickness of steel faceplates, and the effect of strengthening the bottom region of the wall were considered. The seismic behavior of the modeled composite shear wall was evaluated in terms of stiffness, ductility, lateral strength, and energy dissipation capacity. The results of the study showed that the diameter of tie bars had a trivial effect on the performance of the composite shear wall, but increasing the tie bars spacing decreased ductility. Studying the effect of infill concrete thickness, concrete compressive strength, and thickness of steel faceplates also showed that the main role of infill concrete was to prevent buckling of steel faceplates. Also, by strengthening the bottom region of the wall, as long as the strengthened part did not provide a support performance for the upper part, the behavior of the composite shear wall was improved; otherwise, ductility of the wall could be reduced severely.

철근콘크리트 휨부재의 최대철근비에 대한 고찰: 단철근 직사각형보를 중심으로 (An Examination of the Maximum Steel Ratio for Reinforced Concrete Flexural Members: Focused on Singly Reinforced Beam with Rectangular Cross-section)

  • 이준석;김우;최승원
    • 콘크리트학회논문집
    • /
    • 제29권2호
    • /
    • pp.179-187
    • /
    • 2017
  • 철근콘크리트 휨 부재의 최대철근비에 대한 설계 규정은 일반적으로 부재 파괴 시 철근이 항복하도록 하여 충분한 연성과 경제성을 보장 하도록 하고 있다. 콘크리트구조기준(2012)에서 최대철근비는 인장 철근의 순인장변형률 항으로 표현되고, 고강도 재료가 사용되는 경우 매우 높은 철근비를 나타낸다. 따라서 이는 콘크리트 타설시 시공성 확보에 어려움을 야기할 수 있다. 이에 반해, 도로교설계기준(한계상태설계)에서는 최대중립축 깊이비가 0.4가 되도록 최대철근비를 규정하고 있다. 이 결과로부터 시공성 및 연성을 확보할 수 있는 최대철근비에 대한 합리적인 모델을 제시하였다.

Comparing the dynamic behavior of a hospital-type structure with fixed and isolated base

  • Nasery, Mohammad Manzoor;Ergun, Mustafa;Ates, Sevket;Husem, Metin
    • Earthquakes and Structures
    • /
    • 제9권3호
    • /
    • pp.657-671
    • /
    • 2015
  • The level of ductility is determined by depending on the intended use of the building, the region's seismic characteristics and the type of structural system when buildings are planned by engineers. Major portion of seismic energy is intended to be consumed in the plastic zone in structural systems of high ductility, so the occurrence of damages in load bearing and non-load bearing structural elements is accepted in planning stage under severe earthquakes. However, these damages must be limited among specific values in order not to endanger buildings in terms of the bearing capacity. Isolators placed between the basement and upper structure make buildings behave elastically by reducing the effects of seismic loads and improving seismic performance of building significantly. Thus, damages can be limited among desired values. In this study, the effectiveness of seismic isolation is investigated on both fixed based and seismic isolated models of a hospital building with high ductility level with regard to lateral displacements, internal forces, structural periods and cost of the building. Layered rubber bearings are interposed between the base of the structure and foundation. Earthquake analysis of the building are performed using earthquake records in time domain (Kocaeli, Loma Prieta and Landers). Results obtained from three-dimensional finite element models are presented by graphs and tables in detail. That seismic isolation reduces significantly the destructive effects of earthquakes on structures is seen from the results obtained by seismic analysis.

C-Mn계 TRIP강의 잔류오스테나이트 생성과 기계적 성질에 미치는 역변태처리의 영향 (Effect of Reverse Transformation Treatment on the Formation of Retained Austenite and Mechanical Properties of C-Mn TRIP Steels)

  • 유재선;홍호;이오연;진광근;김성주
    • 한국재료학회지
    • /
    • 제14권2호
    • /
    • pp.126-132
    • /
    • 2004
  • The high strength steel sheets has been widely used as the automobile parts to reduce the weight of a vehicle. The aim of this research is to develop the TRIP aided high strength low carbon steels using reverse transformation process. The 0.15C-4Mn and 0.15C-6.5Mn steel sheets were reversely transformed by slow heating to intercritical temperature region and air cooling to room temperature. The stability of retained austenite depends on the enrichment of carbon and manganese by diffusion during the reverse transformation. The amount of retained austenite formed after reversely transformed at $645^{\circ}C$ for 12 hrs. was about 46vol.% in hot rolled 0.lC-6.5Mn steel. The change in volume fraction of retained austenite with a holding temperature was consistent with the changes in elongation and the strength-ductility combination. The tendency of tensile strength to increase with increasing the holding temperature was due to the decrease of retained austenite after cooling from the higher temperature of $670 ^{\circ}C$. The maximum strength-ductility combination was about 4,250 kg/$\textrm{mm}^2$ㆍ% when the hot rolled 0.lC-6.5Mn steel was reversely transformed at $645^{\circ}C$ for 12 hrs.

Behavior study of NC and HSC RCCs confined by GRP casing and CFRP wrapping

  • Sajedi, Fathollah;Shariati, Mahdi
    • Steel and Composite Structures
    • /
    • 제30권5호
    • /
    • pp.417-432
    • /
    • 2019
  • This paper presents the results of axial compression testing and numerical modeling on reinforced concrete columns (RCC) with normal concrete (NC) and high-strength concrete (HSC), RCC confined by glass-fiber reinforced plastic pipes (GRP) casing as well as carbon fiber reinforced polymer (CFRP), The major parameters evaluated in the experiments were the effects of concrete type, GRP casing and CFRP wrapping, as well as the number of CFRP layers. 12 cylindrical RCC ($150{\times}600mm$) were prepared and divided into two groups, NC and HSC. Each group was divided into two parts; with and without GRP casing. In each part, one column was without CFRP strengthening layer, a column was wrapped with one CFRP layer and another column with two CFRP layers. All columns were tested under concentrated compression load. Numerical modeling was performed using ABAQUS software and the results of which were compared with experimental findings. A good agreement was found between the results. Results indicated that the utilization of CFRP wrapping and GRP casing improved compression capacity and ductility of RCC. The addition of one and two layer-FRP wrapping increased capacity in the NC group to an average of 18.5% and 26.5% and in the HSC group to an average of 10.2% and 24.8%. Meanwhile, the utilization of GRP casing increased the capacity of the columns by 3 times in the NC group and 2.38 times in the HSC group. The results indicated that although both CFRP wrapping and GRP casing increased confinement, the GRP casing gave more increase capacity and ductility of the RCC due to higher confinement. Furthermore, the confinement effect was higher on NC group.

Effect of fiber content on the performance of UHPC slabs under impact loading - experimental and analytical investigation

  • Muhammad Umar Khan;Shamsad Ahmad;Mohammed A. Al-Osta;Ali Husain Algadhib;Husain Jubran Al-Gahtani
    • Advances in concrete construction
    • /
    • 제15권3호
    • /
    • pp.161-170
    • /
    • 2023
  • Ultra-high-performance concrete (UHPC) is produced using high amount of cementitious materials, very low water/cementitious materials ratio, fine-sized fillers, and steel fibers. Due to the dense microstructure of UHPC, it possesses very high strength, elasticity, and durability. Besides that, the UHPC exhibits high ductility and fracture toughness due to presence of fibers in its matrix. While the high ductility of UHPC allows it to undergo high strain/deflection before failure, the high fracture toughness of UHPC greatly enhances its capacity to absorb impact energy without allowing the formation of severe cracking or penetration by the impactor. These advantages with UHPC make it a suitable material for construction of the structural members subjected to special loading conditions. In this research work, the UHPC mixtures having three different dosages of steel fibers (2%, 4% and 6% by weight corresponding to 0.67%, 1.33% and 2% by volume) were characterized in terms of their mechanical properties including facture toughness, before using these concrete mixtures for casting the slab specimens, which were tested under high-energy impact loading with the help of a drop-weight impact test setup. The effect of fiber content on the impact energy absorption capacity and central deflection of the slab specimens were investigated and the equations correlating fiber content with the energy absorption capacity and central deflection were obtained with high degrees of fit. Finite element modeling (FEM) was performed to simulate the behavior of the slabs under impact loading. The FEM results were found to be in good agreement with their corresponding experimentally generated results.

주철근비에 따른 고강도 콘크리트 보의 휨거동 (The Effect of Longitudinal Steel Ratio on Flexural Behavior of Reinforced High Strength Concrete Beams)

  • 김진근;박찬규
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 1994년도 봄 학술발표회 논문집
    • /
    • pp.71-76
    • /
    • 1994
  • Eight singly reinforced high strength concrete beams were tested to investigate their flexural behavior. The variable is tensile steel raio. The test results are presented in terms of load-deformation behavior, ductility indexes, and cracking patterns. The flexural strengths obtained experimentally are compapred to the analytical results, and good agreements are obtained. The flexural design provisions of the ACI Building Code are found to be adequate to predict the strength of reinforced high-strength concrete beams.

  • PDF

순수휨 구간내 스터럽이 보강된 고강도 콘크리트 보의 휨거동 연구 (Flexural Behavior of High-Strength Concrete Beams with Confinement in Pure Bending Zone)

  • 장일영;박훈규;황규철;남성현
    • 한국콘크리트학회:학술대회논문집
    • /
    • 한국콘크리트학회 2002년도 봄 학술발표회 논문집
    • /
    • pp.959-964
    • /
    • 2002
  • The purpose of this study is to establish flexural behavior of high-strength concrete by means of both theoretical approach and experimental analysis of beams in which confinement stirrups have been introduced into pure bending zone. The experiment was carried out on full-scale high-strength reinforced concrete beams whose compressive strengths are 400 and 700kgf/cm$^2$, and confined with rectangular closed stirrups. The test results are reviewed in terms of flexural capacity and ductility.

  • PDF