• Title/Summary/Keyword: high ductility

Search Result 969, Processing Time 0.028 seconds

Shear Strenhth and Ductility of Steel-Fiber Reinforced High Strength Concrete Beams with Shear Confinement (전단보강이 있는 강섬유 보강 고강도 철근콘크리트 보의 전단 및 연상에 관한 연구)

  • 오정근;이광수;권영호;신성우
    • Magazine of the Korea Concrete Institute
    • /
    • v.2 no.4
    • /
    • pp.53-60
    • /
    • 1990
  • Investigations on the behavior of steel fiber reinforced high strength concrete beams with shear confinement are accomplished to determine their ultimate shear strength including diagonal tension strength. The parameters varied were the shear confinement ratio(Ps), and fiber volume fraction(Vs). Ultimate shear strength increased significantly in steel fiber reinforced concrete beam without shear confinement. In steel- fiber reinforced high strength concrete beams with shear confinement, there is no increase of ultimate shear strength but shows much beneficial effects of Ductility Capacity.

An experimental Study on Effect of Lateral Ties of High-Strength Concrete Columns (고강도 콘크리트 기둥에서 띠철근의 구속효과에 관한 실험적 연구)

  • 정봉호;곽노현;이영호;은희창;정헌수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1999.04a
    • /
    • pp.501-506
    • /
    • 1999
  • The purpose of this study is to experimentally investigate the strength and ductility of reinforced high strength concrete columns under uniaxial load and several test variables. To do this, we have conducted tests on thirteen 20$\times$20$\times$60cm specimens with 8 and 12 longitudinal steel bars subjected to monotonic uniaxial compression. The main variables considered in this test are the configuration of ties, the space the ties, the diameter of ties and yield strength of ties. The results indicate that the strength and the ductility of reinforced high strength concrete columns have been influenced on these variables except yield strength of ties. Judging from test results, real stress of ties at peak concrete stress is suitable variable than yield strength of ties for estimation of the strength gain factor(Ks).

  • PDF

Flexural capacity evaluation of hybrid composite beam using high strength steel (고강도강재를 적용한 하이브리드 합성보의 휨성능 평가)

  • Kim, Dae-Hee;Lee, Kyung-Koo;Kim, Young-Gi;Min, Kyung-Cheol;Byeon, Tae-Woo;Joo, Eun-Hee
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2022.04a
    • /
    • pp.146-147
    • /
    • 2022
  • Exposed composite beams composed of H-beams and concrete slabs are generally used in building structures because of their excellent economics and flexural strength. However, deep beams used under large load often make difficulties in construction. In this study, an exposed composite beam with high strength steel (SM460) used in the bottom flange of built-up H-shaped beam, so-called S-Beam, was proposed in order to reduce beam depth. And its positive and negative flexural strengths were experimentally evaluated. The test results showed that S-Beam has excellent flexural strength and ductility.

  • PDF

Manufacturing of High-Strength and High-Ductility Pearlitic Steel Wires Using Noncircular Drawing Sequence (비원형 신선을 이용한 고강도-고연성 펄라이트 강선의 제조)

  • Baek, Hyun Moo;Hwang, Sun Kwang;Joo, Ho Seon;Im, Yong-Taek;Son, Il-Heon;Bae, Chul Min
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.38 no.7
    • /
    • pp.743-749
    • /
    • 2014
  • In this study, a noncircular drawing (NCD) sequence for manufacturing high-strength and high-ductility pearlitic steel wires was investigated. Multipass NCD was conducted up to the 12th pass at room temperature with two processing routes (defined as the NCDA and NCDB), and compared with the wire drawing (WD). During the torsion test, delamination fracture in the drawn wire was observed in the 10th pass of the WD whereas it was not observed until the 12th pass of the NCDB. From X-ray diffraction, the circular texture component that increases the likelihood of delamination fracture of the drawn wire was rarely observed in the NCDB. Thus, the improved ability of the multipass NCDB to manufacture high-strength pearlitic steel wires with high torsional ductility compared to the WD (by reducing the likelihood of delamination fracture) was demonstrated.

High-strength RC columns subjected to high-axial and increasing cyclic lateral loads

  • Bhayusukma, Muhammad Y.;Tsai, Keh-Chyuan
    • Earthquakes and Structures
    • /
    • v.7 no.5
    • /
    • pp.779-796
    • /
    • 2014
  • This experimental investigation was conducted to examine the behavior and response of high-strength material (HSM) reinforced concrete (RC) columns under combined high-axial and cyclic-increasing lateral loads. All the columns use high-strength concrete ($f_c{^{\prime}}$=100MPa) and high-yield strength steel ($f_y$=685MPa and $f_y$=785MPa) for both longitudinal and transverse reinforcements. A total of four full-scale HSM columns with amount of transverse reinforcement equal to 100% more than that required by earthquake resistant design provisions of ACI-318 were tested. The key differences among those four columns are the spacing and configuration of transverse reinforcements. Two different constant axial loads, i.e. 60% and 30% of column axial load capacity, were combined with cyclically-increasing lateral loads to impose reversed curvatures in the columns. Test results show that columns under 30% of axial load capacity behaved much more ductile and had higher lateral deformational capacity compared to columns under the 60% of axial load capacity. The columns using closer transverse reinforcement spacing have slightly higher ductility than columns with larger spacing.

Development of New Ni-based Cast Superalloy with Low Density and High Temperature Capability for Turbine Wheel in Automotive Turbocharger (자동차 터보충전기 터빈휠용 경량 고내열 주조 Ni기 초합금의 개발)

  • Yutaro Oki;Yoshinori Sumi;Yoshihiko Koyanagi
    • Journal of Korea Foundry Society
    • /
    • v.42 no.6
    • /
    • pp.392-397
    • /
    • 2022
  • In order to compliant the stringent exhaust emission regulations, higher fuel efficiency and cleaner exhaust gas in combustion engines have been required. To improve combustion efficiency, an exhaust gas temperature is increasing, therefore higher temperature resistance is required for components in exhaust system, especially turbine wheel in turbocharger. IN100 looks quite attractive candidate as it has high temperature properties with low density, however it has low castability due to poor ductility at high temperature. In this study, the balance of Al and Ti composition was optimized from the base alloy IN100 to improve the high temperature ductility by expanding the γ single phase region below the solidification temperature, while obtaining the high temperature strength by maintaining the volume fraction of γ' phase equivalent to IN100 around 1000℃. Furthermore, the high temperature creep rupture life increased by adding a small amount of Ta. The alloy developed in this study has high castability, low density and high specific strength at high temperature.

Improvement and Evaluation of Seismic Performance of Flat Plate Slab-Column Joint Using High Ductile Fiber-Reinforced Mortar (고인성섬유 복합모르타르를 활용한 플랫 플레이트 슬래브-기둥 접합부의 내진성능 평가 및 개선)

  • Ha, Gee-Joo;Yi, Dong-Ryul
    • Journal of the Korea Concrete Institute
    • /
    • v.24 no.3
    • /
    • pp.341-349
    • /
    • 2012
  • Recently, as structures in Korea and other countries become much taller, larger, and more specialized, concrete used for constructions of these structures is required to have high performance characteristics. Especially, seismic performance of concrete must be improved to resist cyclic loading from earthquakes. Consequently, this study was performed to focus on developing optimal mixtures of high ductile fiber reinforced mortar with high ductility and durability, which have good serviceability, stability and reliability performances. Eventually, this material is expected to improve seismic performance of concrete structures such as load carrying capacity, ductility capacity, and energy dissipation capacity when applied to critical regions of flat plate slab-column joint. Ultimately, this research is intended to develop a material for basic designs and practical constructions of reinforced concrete structures. Test results showed that the maximum load carrying capacity, the ductility capacity, and the energy dissipation capacity of the test specimens titled RCFPP series were increased by 15%~34%, by 33%~37%, and by 2.14 times, respectively, compared to those of the standard specimen titled SRCFP.

Seismic behavior of circular-in-square concrete-filled high-strength double skin steel tubular stub columns with out-of-code B/t ratios

  • Jian-Tao Wang;Yue Wei;Juan Wang;Yu-Wei Li;Qing Sun
    • Steel and Composite Structures
    • /
    • v.49 no.4
    • /
    • pp.441-456
    • /
    • 2023
  • Aiming at the development trend of light weight and high strength of engineering structures, this paper experimentally investigated the seismic performance of circular-in-square high-strength concrete-filled double skin steel tubular (HCFDST) stub columns with out-of-code width-to-thickness (B/t) ratios. Typical failure mode of HCFDST stub columns appeared with the infill material crushing, steel fracture and local buckling of outer tubes as well as the inner buckling of inner tubes. Subsequently, the detailed analysis on hysteretic curves, skeleton curves and ductility, energy dissipation, stiffness degradation and lateral force reduction was conducted to reflect the influences of hollow ratios, axial compression ratios and infill types, e.g., increasing hollow ratio from 0.54 to 0.68 and 0.82 made a slight effect on bearing capacity compared to the ductility coefficients; the higher axial compression ratio (e.g., 0.3 versus 0.1) significantly reduced the average bearing capacity and ductility; the HCFDST column SCFST-6 filled with concrete obviously displayed the larger initial secant stiffness with a percentage 34.20% than the column SCFST-2 using engineered cementitious composite (ECC); increasing hollow ratios, axial compression ratios could accelerate the drop speed of stiffness degradation. The out-of-code HCFDST stub columns with reasonable design could behave favorable hysteretic performance. A theoretical model considering the tensile strength effect of ECC was thereafter established and verified to predict the moment-resisting capacity of HCFDST columns using ECC. The reported research on circular-in-square HCFDST stub columns can provide significant references to the structural application and design.

Effect of Cold Working on Tensile and Charpy Impact Properties of a High-Nitrogen Fe-18Mn-18Cr-0.61N Austenitic Steel (오스테나이트계 Fe-18Mn-18Cr-0.61N 고질소강의 인장 및 충격 특성에 미치는 냉간 가공의 영향)

  • Lee, S.Y.;Lee, S.I.;Hwang, B.
    • Journal of the Korean Society for Heat Treatment
    • /
    • v.27 no.3
    • /
    • pp.121-126
    • /
    • 2014
  • High-nitrogen Fe-18Mn-18Cr-N austenitic steels with higher yield strength have been recently developed and used for generator retaining rings because they have non-magnetic, high strength, high ductility, and good corrosion resistance. In the present study, a high-nitrogen Fe-18Mn-18Cr-0.61N austenitic steel was fabricated and then tensile and Charpy impact tests were conducted on them in order to investigate the effect of cold working on the mechanical properties. Although the yield and tensile strengths usually increased with cold working, the ductility and impact toughness significantly decreased after cold working. On the other hand, the high-nitrogen austenitic steel exhibited a ductile-brittle transition due to unusual brittle fracture at low temperatures despite having a face-centered cubic structure. The ductile-brittle transition temperature obtained from Charpy impact tests could be remarkably increased by $60^{\circ}C$ after 20% cold working because of the enhanced cleavage-like brittle fracture.

Flexural behavior of ultra high performance concrete beams reinforced with high strength steel

  • Wang, Jun-Yan;Gu, Jin-Ben;Liu, Chao;Huang, Yu-Hao;Xiao, Ru-Cheng;Ma, Biao
    • Structural Engineering and Mechanics
    • /
    • v.81 no.5
    • /
    • pp.539-550
    • /
    • 2022
  • A detailed experimental program was conducted to investigate the flexural behavior of ultra high performance concrete (UHPC) beams reinforced with high strength steel (HSS) rebars with a specified yield strength of 600 MPa via direct tensile test and monotonic four-point bending test. First, two sets of direct tensile test specimens, with the same reinforcement ratio but different yield strength of reinforcement, were fabricated and tested. Subsequently, six simply supported beams, including two plain UHPC beams and four reinforced UHPC beams, were prepared and tested under four-point bending load. The results showed that the balanced-reinforced UHPC beams reinforced with HSS rebars could improve the ultimate load-bearing capacity, deformation capacity, ductility properties, etc. more effectively owing to interaction between high strength of HSS rebar and strain-hardening characteristic of UHPC. In addition, the UHPC with steel rebars kept strain compatibility prior to the yielding of the steel rebar, further satisfied the plane-section assumption. Most importantly, the crack pattern of the UHPC beam reinforced with HSS rebars was prone to transform from single main crack failure corresponding to the normal-strength steel, to multiple main cracks failure under the condition of balanced-reinforced failure, which validated by the conclusion of direct tensile tests cooperated with acoustic emission (AE) source locating technique as well.