• Title/Summary/Keyword: high density vesicle

Search Result 14, Processing Time 0.021 seconds

Multiplication of Infectious Flacherie and Densonucleosis Viruses in the Silkworm, Bombyx mori (가잠의 전염성 연화병 및 농핵병 바이러스 증식에 관한 연구)

  • 김근영;강석권
    • Journal of Sericultural and Entomological Science
    • /
    • v.25 no.2
    • /
    • pp.1-31
    • /
    • 1984
  • Flacherie, as one of the most prevalent silkworm diseases, causes severe economic damage to sericultural industry and its pathogens have been proved to be flacherie virus (FV) and densonucleosis virus (DNV). Multiplications of the viruses in the larvae of the silkworm, Bombyx mori, were studied by the sucrose density gradient centrifugation and electron microscopy. The quantitative and qualitative changes of nucleic acids and proteins were investigated from the midgut and hemolymph in the silkworm larvae infected separately with FV and DNV. The histopathological changes of epithelial cells of infected midgut also were examined by an electron microscope. 1. Purified fractions of FV or DNV in a sucrose density gradient centrifugation yielded one homogenous and sharp peak without a shoulder, suggesting no heterogenous materials in the preparation. Electron microscopy also revealed that FV and DNV were spherical particles, 27nm and 21nm in diameter, respectively. 2. Silkworm larvae showed a decrease in body weight on the 6th day and in midgut weight on the 3rd day after inoculation with FV or DNV. 3. DNA content was higher in the midgut when infected with FV or DNV, but the hemolymph of the infected larvae showed no difference during first 6 days after inoculation, after which DNA concentration declined rapidly. 4. RNA synthesis of silkworm larvae infected separately with FV and DNV was stimulated in the midgut, but RNA content was reduced in the hemolymph at the early stage of virus multiplication. At the late stage of virus multiplication, however, it was extremely reduced in both midgut and hemolymph. 5. The concentration of protein in the midgut and hemolymph of silkworm larvae infected separately with FV and DNV showed no difference from that of the healthy larvae at the early stage of virus multiplication, but it was significantly reduced at the late stage of virus multiplication. 6. There was no difference in the electrophoretic patterns of RNAs extracted from the midgut of healthy or virus-infected larvae. 7. The electrophoresis of proteins extracted from the midgut infected with FV or DNV, when carried out on the 1st and 5th day after virus inoculation, showed no difference from that of the healthy larvae. But, there was an additional band with medium motility in the proteins on the 8th day after virus inoculation, while a band with low mobility shown in the proteins of healthy larvae disappeared in the infected larvae. However, a band with high mobility in the healthy larvae was separated into two fractions in the infected larvae. 8. The electrophoretic pattern of hemolymph proteins of the silkworm larvae infected separately with FV and DNV was similar to that of the healthy larvae, but the concentration of hemolymph proteins in the infected larvae was lower than that of the healthy larvae at the late stage. 9. Two types of inclusion bodies were shown by the double staining of pyronin-methyl green in the columnar cell of the midgut on the 8th day after FV inoculation. 10. Electron microscopy of the infected midgut revealed that the 'cytoplasmic wall' of the goblet cell thickened on the 5th day after FV inoculation and several types of the cytopathogenic structures, such as virus$.$specific vesicles, virus particles, linear structures, tubular structures, and high electron-dense matrices were observed in the cytoplasm of the goblet cell. The virus particles were also observed in the microvilli and the structures similar to spherical virus particles were observed around the virus-specific vesicles, suggesting the virus assembly in the cytoplasm. 11. Fluorescence micrograph of the infected midgut stained with acridine orange showed that the nucleus, the site of DNV multiplication in the columnar cell, enlarged on the 5th day after virus inoculation. 12. Electron microscopic examination of DNV infected midgut revealed that the nucleolus of the columnar cell was broken into granules and those granules dispersed into apical region of the nucleus on the 5th day after virus inoculation. On the 8th day after inoculation, it was also observed that the nucleus of the columnar cell was full with the high electron-dense virogenic stroma which were similar to virus particles. These facts suggest that the virogenic stroma were the sites of virus assembly in the process of DNV multiplication.

  • PDF

Ultrastructural Localization of ZnT3 and Zinc Ions in the Mouse Choroid Plexus (생쥐 맥락얼기에 분포하는 ZnT3 및 zinc 이온의 조직화학적 동정)

  • Kim, Sung-Joo;Kim, Yong-Kuk;Sun, Yuan-Jie;Kim, Soo-Jin;Jeong, Young-Gil;Yu, Yun-Cho;Jo, Seung-Mook
    • Applied Microscopy
    • /
    • v.32 no.4
    • /
    • pp.377-383
    • /
    • 2002
  • We have detected the murine zinc transporter, ZnT3, and zinc ions in the mouse choroid plexus by immunocytochemistry (ICC) and zinc selenium autometallography ($ZnSe^{AMG}$), respectively. BALB/c mice served as experimental animals. Routine floating ABC immunocytochemical procedures were used for the ZnT3 immunocytochemistry, and the mice were injected intraperitoneally (i.p.) with sodium selenide (10 mg/kg) for the zinc selenium autometallography. The choroid plexus showed weak immunoreactivity (Ir) for ZnT3. At high magnification, ZnT3-Ir was seen to be located in the choroid epithelium and the connective tissue of the capillaries. At the EM level, a high electron density of ZnT3-immunoreactivity was restricted to vesicle membranes as well as microvilli in the apical membrane. In contrast, immunostaining of ZnT3 was completely absent in the basolateral plasma membrane and other cell organelles. After silver enhancement, fine $ZnSe^{AMG}$ grains were observed in both the epithelial and endothelial cells of the choroid plexus. Few $ZnSe^{AMG}$ grains present in the cell bodies of the choroid epithelial cells were located in multivesicular bodies. It is striking that very many $ZnSe^{AMG}$ grains were observed in the endothelial cells of the capillaries. These findings establish the choroid plexus as a non-neuronal pool of zinc ions in the brain, although the functional significance of this pool is not clear. The choroid epithelium, however, may play an important role in the transportation of zinc between the CSF and brain tissue.

Studies on the Highly-phosphorylated Nucleotides during the Differentiation of Aspergillus niger (검정곰팡이의 분화(分化)에 따르는 균체내(菌體內)의 고인산(高燐酸)뉴크레오티드의 소장(消長)에 관한 연구(硏究))

  • Kim, Jong-Hyup
    • The Korean Journal of Mycology
    • /
    • v.10 no.2
    • /
    • pp.57-65
    • /
    • 1982
  • Highly phosphorylated nucleotides were investigated to assure whether the eucaryotic Aspergillus niger produce these substances or not during the differentiation. Investigation was extended to see how organic phosphate interacts with inorganic polyphosphate during development, and high molecular weight RNA-polyphosphate complex was detected in 2.6% polyacrylamide gel by electrophoresis. Guanosine tetraphosphate was found in vesicle and phialide forming mycelia and spore forming body by PEI cellulose TLC. It is revealed that guanosine tetraphosphate is a common substance for spore formation in eucaryotic microorganisms as well as in procaryotic. Especially, prior to sporulation, protein bound RNA and protein bound phosphate may occur as a result of reorganization of cellular materials. The evidence was obtained by the fact of differential increase of optical density ratio between the samples from different developmental stages of this fungus. In 2.6% polyacrylamide gel which was run to electrophoresis, high molecular weight RNA (mostly rRNA) was found to couple and to make RNA-polyphosphate complex. The complex was examined with enzymes and radioactive isotope of $^{32}P$. (enzymic test was not reported here.) RNA-polyphosphate complex might be another sort of highly phosphorylated nucleotide or rRNA beside guanosine-tetraphosphate.

  • PDF

Reproductive Cycle of Small Filefish, Rudarius ercodes (그물코쥐치, Rudarius ercodes의 생식주기)

  • LEE Taek Yuil;HANYU Isao
    • Korean Journal of Fisheries and Aquatic Sciences
    • /
    • v.17 no.5
    • /
    • pp.423-435
    • /
    • 1984
  • The reproductive cycle of the small filefish, Rudarius ercodes was investigated based on the annual variations of gonadosomatic index(GSI) and hepatosomatic index(HSI) by electronic and photic microscophy. The specimens used were collected at the coastal area of Benden island, Sizuokagen, Japan, from September 1982 to August 1983. GSI began to increase from March, starting season of longer daylength and higher water temperature, and reached the maximum value between June and August. It began to decrease from September with the lowest value appearing between November and February without any evident variation. The annual variations of HSI were not distinct in male filefish and were negatively related to GSI in female : HSI decreased in the summer season when the ovary was getting mature and reached the maximum in the winter season when the ovary was getting retrogressive. The ovary consisted of a pair of saccular structure with numerous ovarian sacs branched toward the median cavity. Oogonia divided and proliferated along the germinal epithelium of the ovarian sac. Young oocytes with basophile cytoplasm showed several scattering nucleoli along the nuclear membrane. when the oocytes growing to about 300 ${\mu}m$, nuclear membrane to disappear with nucleus migrating toward the animal pole. The regions of protoplasm were extremely confined within the animal hemisphere in which most of cytoplasms were filled with yolk materials and oil drops. After ovulation, residual follicles and growing oocytes remaining in the ovarian sacs degenerated. But perinucleatic young oocytes without follicles formed were not degenerated, and growing continuously still in the next year. Mitochondria and endoplasmic reticula in the cytoplasm remarkably increased with oocytes maturing and yolk accumulating. Those were considered to be functionally related to the yolk accumulation. Five or six layers of possible vitellogenin, oval-shaped disc structures with high electron density, appeared in the apex of follicular processes stretching to the microvilli pits of mature oocytes. Testis consisting of a pair of lobular structures in the right and left were united in the posterior seminal vesicle, Cortex of testis was composed of several seminiferous tubules, and medulla consisting of many sperm ducts connected with tubules. Steroid hormone-secreting cells with numerous endoplasmic reticula and large mitochondria of well developed cristae were recognized in the interstitial cells of the growing testis. Axial filament of spermatozoon invaginated deeply in the central cavity of the nucleus and the head formed U-shape with acrosome severely lacking, mitochondria formed large globular paranuclei at the posterior head, and microtubular axoneme of the tail represented 9+9+2 type. The annual reproductive cycles could be divided into five successive stages : growth(March to July), maturation(May to September), Spawning(mid May to early October) and resting stages(October to February). The spawning peak occurred from June to August.

  • PDF