• Title/Summary/Keyword: high density polyethylene

Search Result 360, Processing Time 0.03 seconds

Electrical Conduction of Polyethylene/Ethylene Vinyl Acetate Blend (Polyethylene/Ethylene Vinyl Acetate Blend의 전기전도현상)

  • Lee, Chang-R.;Kim, Ok;Lee, Mi-Kyung;Suh, Kwang-S.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1995.05a
    • /
    • pp.115-119
    • /
    • 1995
  • Electrical conduction characteristics of Polyethylene/Ethylene vinyl acetate blends of varing vinyl acetate content(1% and 4%) were investigated at electric fields ranging from 10$\^$6/ to 10.$\^$8/ V/cm over the temperature range of 30 and 85$^{\circ}C$. It was obser-ved that the extent of current density was changed at the blends and the rate of change of current den-sity was slightly suppressed at high field range, but PE and EVA were not shown. The change of con-duction characteristics and a suppression in rate of change of current density were attributed to the VA content in PE.EVA blends.

  • PDF

A Study on the Combustability of Formed Polyethylene (성형 Polyethylene의 연소성에 관한 연구)

  • 정국삼;류영순
    • Journal of the Korean Society of Safety
    • /
    • v.9 no.3
    • /
    • pp.60-66
    • /
    • 1994
  • The purpose of this study is to compare the combustability of the formed high density polyethylene (HDPE) with the low density polyethlyene(LDPE). That is, the easiness of ignition is examined by using the methods with Oxygen Index(OI) Tester and ventilation parameter, and the combustion velocity of these polyethylenes is measured by changing the size and shape of opening area. As the result of it, the oxygen index of HDPE, in a ignition, is required more than LDPE. Then, the concentration distribution of CO by combustion is increased when the opening area is small, but, in the same opening area, LDPE tends to increase more than HDPE. In addition, as the ratio of height to width of opening area is increased, combustion velocity becomes faster relatively. In consequence, when it is generally considered, the combustability of LDPE is better than HDPE.

  • PDF

Polyethylene flow prediction with a differential multi-mode Pom-Pom model

  • Rutgers, R.P.G.;Clemeur, N.;Debbaut, B.
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.1
    • /
    • pp.25-32
    • /
    • 2002
  • We report the first steps of a collaborative project between the University of Queensland, Polyflow, Michelin, SK Chemicals, and RMIT University, on simulation, validation and application of a recently introduced constitutive model designed to describe branched polymers. Whereas much progress has been made on predicting the complex flow behaviour of many - in particular linear - polymers, it sometimes appears difficult to predict simultaneously shear thinning and extensional strain hardening behaviour using traditional constitutive models. Recently a new viscoelastic model based on molecular topology, was proposed by McLeish and carson (1998). We explore the predictive power of a differential multi-mode version of the porn-pom model for the flow behaviour of two commercial polymer melts: a (long-chain branched) low-density polyethylene (LDPE) and a (linear) high-density polyethylene (HDPE). The model responses are compared to elongational recovery experiments published by Langouche and Debbaut (19c99), and start-up of simple shear flow, stress relaxation after simple and reverse step strain experiments carried out in our laboratory.

Optimization of the Processing Parameters for Green Banana Chips and Packaging within Polyethylene Bags

  • Mitra, Pranabendu;Kim, Eun-Mi;Chang, Kyu-Seob
    • Food Science and Biotechnology
    • /
    • v.16 no.6
    • /
    • pp.889-893
    • /
    • 2007
  • The demand of quality green banana chips is increasing in the world snacks market, therefore, the preparation of quality chips and their subsequent shelf life in packaging were evaluated in this study. Banana slices were fried in hot oil to the desired moisture content (2-3%) and oil content (40%) in chips at 3 different temperatures, and the impact of different pretreatments were compared by sensory assessment. A linear relationship between time and temperature was used to achieve the optimal processing conditions. Banana slices fried at the lower temperature of $145^{\circ}C$ took longer to reach the desired chip qualities, but gave the best results in terms of color and texture. Blanching was the most effective pre-treatment for retaining the light yellow color in finished chips. For extending the shelf life of chips, moisture proof packaging in double layer high density polyethylene was more effective than single layer low density polyethylene.

The Improvement of Radiation Characteristics of Low Density Polyethylene by Addition of Treeing Inhibitors (트리 억제제 첨가에 의한 저밀도 폴리에틸렌의 내방사선성 향상)

  • Kim, Ki-Yup;Lee, Chung;Ryu, Boo-Hyung;Lim, Kee-Joe
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.49 no.8
    • /
    • pp.455-461
    • /
    • 2000
  • The inhibiting effects of electrical treeing and insulation properties of LDPE contained with treeing inhibitors was studied under radiation environment. Barbituric acid and its derivatives were selected as treeing inhibitors. The inception voltage and growth of tree, AC breakdown strength, volume resistivity, high frequency capacitance, and dissipation factor were observed as a function of dose(up to 1000 kGy). And also, measurements of thermo-luminescence(TL), and gel content were carried out. Crosslinked low density polyethylene(XLPE) contained with treeing inhibitors shows better insulation characteristics such as electrical tree propagation, AC breakdown strength, and volume resistivity than those of pure LDPE. The most effective treeing inhibitor was found on the barbituric acid contained XLPE.

  • PDF

EFFECT OF ARGON AND OXYGEN PLASMAS ON VARIOUS POLYETHYLENE SHEETS

  • Chen, Yashao;Hirayama, Naoki;Gomi, Masaki;Kiuchi, Kenji;Momose, Yoshihiro
    • Journal of the Korean institute of surface engineering
    • /
    • v.32 no.3
    • /
    • pp.344-350
    • /
    • 1999
  • The surface chemical structure of three kinds of polyethylene (PE): high density (HD) PE, low density (LD) PE and linear (L)-LDPE exposed to Ar and $O_2$ plasmas has been investigated using XPS. Oxygen was incorporated in a more increased amount for HDPE than for L-LDPE and LDPE. Ar plasma tended to incorporate more oxygen than $O_2$ plasma. The XPS valence band spectra for Ar plasma exhibited a clear peak assigned to $O_2$s character. By chemical derivatization method it was found that the amount of -COOH group at the surface was much greater than that of -OH group. The hydrophilic nature of plasma-treated PE increased in the order: LDPE

  • PDF

Manufacture of Short Fiber Prepreg using Electroflocking (Electroflocking을 이용한 단섬유 프리프레그 제조에 관한 연구)

  • Lim, S.H.;Lee, S.S.;Pak, M.;Kim, J.K.;Choe, C.R.;Kwon, S.J.
    • Proceedings of the Korean Society For Composite Materials Conference
    • /
    • 2002.10a
    • /
    • pp.288-291
    • /
    • 2002
  • The carbon fiber or glass fiber reinforced prepregs were manufactured using electrostatic flocking technology. The powder of high density polyethylene was used as a matrix. The base film of polyethylene was prepared using a fluidized bed of polyethylene powder under the high electric field. We obtained HDPE film with uniform thickness of minimum $80\mu\textrm{m}$. And the fibers were aligned on the molten HDPE film by the electroflocking process. The short fibers with 1mm were easily electrically charged and aligned under the high electric field. The carbon fibers with high conductivity were elasily electrically charged than the glass fibers with low conductivity. So lower electric field was needed for the carbon fibers.

  • PDF

Crosslinking Characteristics of High Density Polyethylene by Reactive Melt Processing (반응 용융 가공에 의한 고밀도 폴리에틸렌의 가교 특성 연구)

  • Lee Jong Rok;Lee Dong Gun;Hong Soon Man;Kang Ho-Jong
    • Polymer(Korea)
    • /
    • v.29 no.4
    • /
    • pp.385-391
    • /
    • 2005
  • Reactive melt processing has been carried out to investigate crosslinking characteristics of high density polyethylene OTDPE) with dicummyl peroxide (DCP) and perbutyle peroxide (PBP). The increase of torque in the internal mixer indicated that the crosslinking in HDPE has been occurred by peroxides. As a result, the substantial decrease of density, melting temperature, and melt enthalpy were found while the melt viscosity increased in partially crosslinked HDPE. In the mechanical properties of partially crosslinked HDPE, the increase of maximum strength and the decrease in elongation at break were clearly noticed and these were more pronounced when PBP was applied as a crosslinking agent. It seems that the maximum strength was obtained with reactive processing temperature at $150^{circ}C$, however, the mixing time did not affect to the strength of partially crosslinked HDPE.

Effect of Metallocene-catalyzed Polyethylene on the Rheological and Mechanical Properties of Poly(phenylene sulfide)/Polyethylene Blends

  • Lee, Bo-Sun;Chun, Byoung-Chul;Chung, Yong-Chan
    • Fibers and Polymers
    • /
    • v.5 no.2
    • /
    • pp.145-150
    • /
    • 2004
  • Blends of poly(phenylene sulfide) (PPS) and polyethylene, either linear low density polyethylene (LLDPE) or metallocene-catalyzed polyethylene (MPE), that were prepared by melt blending, were investigated. From the rheological properties as determined by capillary rheometry, the melt viscosity of both PPS/LLDPE and PPS/MPE blends was low when PE was in dispersed phase, but high melt viscosity was observed for both blends with PPS in dispersed phase. Significant differences depending on the composition were found in the mechanical properties such as percent elongation at break and notched Izod impact strength. In addition, dispersed phase morphology of the blends was analyzed by a scanning electron microscope (SEM), together with brief discussion about the difference between them.

The Electric Breakdown Characteristic of High Density Polyethylene by Making Use of Solution-grown Thin Films (용액법에 의해 작성한 고밀도 폴리에틸렌 박막의 절연파괴(絶緣破壞)특성 연구)

  • Kim, S.K.;Lee, H.W.;Han, S.H.;Park, K.S.;Park, G.M.;Kim, J.S.
    • Proceedings of the KIEE Conference
    • /
    • 1994.07b
    • /
    • pp.1379-1381
    • /
    • 1994
  • In order to investigate the effects of crystal structure in electrical breakdown of polyethylene film. Low molecular materials in polyethylene are removed by the method as follow. Polyethylene was dissolved in xylene and filtered through a glass fiber filter. And then, a polyethylene thin films of thickness $0.5 - 0.9{\mu}m$ are prepared with heat treatment from solution casting. To evaluate the performance of PE film, Electrical breakdown of PE film are measured on M( Al) - I (PE)-M(Al) system.

  • PDF