• 제목/요약/키워드: high density energy beam

검색결과 148건 처리시간 0.041초

중주파수 해석을 위한 웨이브 모형 연구: 두개의 보와 판 연성계 (A wave model of two identical beams coupled by a plate for a mid-frequency analysis)

  • ;;유지우
    • 한국소음진동공학회:학술대회논문집
    • /
    • 한국소음진동공학회 2006년도 추계학술대회논문집
    • /
    • pp.771-775
    • /
    • 2006
  • There has been much effort to find suitable methods for structural analysis in the mid-frequency region where traditional low frequency methods have increasing uncertainties whilst statistical energy analysis is not strictly applicable. Systems consisting of relatively stiff beams coupled to flexible plates have a particularly broad mid-frequency region where the beams support only a few modes whilst the plate has a high modal density and modal overlap. A system of two parallel beams coupled to a plate is investigated based on the wave method, which is an approximate method. The wave model is extended from a single-beam-plate system, to a plate with two identical beams which is modelled using a symmetric-anti symmetric technique. Experimental results such as powers and energy ratios show the validity of the analytical wave models.

  • PDF

A transport model for high-frequency vibrational power flows in coupled heterogeneous structures

  • Savin, Eric
    • Interaction and multiscale mechanics
    • /
    • 제1권1호
    • /
    • pp.53-81
    • /
    • 2008
  • The theory of microlocal analysis of hyperbolic partial differential equations shows that the energy density associated to their high-frequency solutions satisfies transport equations, or radiative transfer equations for randomly heterogeneous materials with correlation lengths comparable to the (small) wavelength. The main limitation to the existing developments is the consideration of boundary or interface conditions for the energy and power flow densities. This paper deals with the high-frequency transport regime in coupled heterogeneous structures. An analytical model for the derivation of high-frequency power flow reflection/transmission coefficients at a beam or a plate junction is proposed. These results may be used in subsequent computations to solve numerically the transport equations for coupled systems, including interface conditions. Applications of this research concern the prediction of the transient response of slender structures impacted by acoustic or mechanical shocks.

RECENT PROGRESS ON LASER DRIVEN ACCELERATORS AND APPLICATIONS

  • LEEMANS W. P.;ESAREY E.;GEDDES C.G.R.;SCHROEDER C. B.;TOTH CS.
    • Nuclear Engineering and Technology
    • /
    • 제37권5호
    • /
    • pp.447-456
    • /
    • 2005
  • Laser driven accelerators promise to provide an alternative to conventional accelerator technology. They rely on the excitation of large amplitude density waves in a plasma by the photon pressure of an intense laser. The density oscillations in which electrons and ions are separated, result in extremely large longitudinal electric fields that can be several orders of magnitude larger than those that are used in today's radio-frequency accelerators. Whereas this principle had been demonstrated experimentally for nearly two decades, it was not until 2004 that the production of high quality electron beams around 100 MeV was demonstrated. Analysis, aided by particle-in-cell simulations, as well as experiments with various plasma lengths and densities, indicate that tailoring the length of the accelerator, together with loading of the accelerating structure with beam, are the keys to production of mono-energetic electron beams. Increasing the energy towards a GeV and beyond will require reducing the plasma density and design criteria are discussed for an optimized accelerator module. The current progress and future directions are summarized through comparison with conventional accelerators, highlighting the unique short and long term prospects for intense radiation sources and high energy accelerators based on laser-drivenplasma accelerators.

전자선 가교 방법을 이용한 탄소/탄화규소 복합재 제조 및 특성 (Fabrication and Characterization of C/SiC Composite by Electron Beam Curing)

  • 신진욱;전준표;강필현
    • 폴리머
    • /
    • 제33권6호
    • /
    • pp.575-580
    • /
    • 2009
  • 폴리카보실란에 탄소직물을 보강제로 이용하여 제조한 탄소/탄화규소 복합재는 좋은 내산화 특성과 열 충격에 강한 특성으로 인해 높은 온도의 구조체에 적용되고 있다. 본 연구에서는 고분자 함침 열분해법을 이용하여 탄소직물에 폴리카보실란 용액을 함침한 후, 전자선을 이용하여 가교하고, 열분해 과정을 통해 탄소/탄화규소 복합재로 제조하였다. 실험 결과 복합재 시료의 공극률과 밀도는 각각 13.5%와 $2.44\;g/cm^3$을 나타냈고, 내산화 특성은 지속적인 고온의 산화 분위기에서 95.9%의 잔류량을 나타내어 본 연구에서 제조한 탄소/탄화규소 복합재의 우수한 내산화 특성을 확인하였다.

Determining PGAA collimator plug design using Monte Carlo simulation

  • Jalil, A.;Chetaine, A.;Amsil, H.;Embarch, K.;Benchrif, A.;Laraki, K.;Marah, H.
    • Nuclear Engineering and Technology
    • /
    • 제53권3호
    • /
    • pp.942-948
    • /
    • 2021
  • The aim of this work is to help inform the decision for choosing a convenient material for the PGAA (Prompt Gamma Activation Analysis) collimator plug to be installed at the tangential channel of the Moroccan Triga Mark II Research Reactor. Two families of materials are usually used for collimator construction: a mixture of high-density polyethylene (HDPE) with boron, which is commonly used to moderate and absorb neutrons, and heavy materials, either for gamma absorption or for fast neutron absorption. An investigation of two different collimator designs was performed using N-Particle Monte Carlo MCNP6.2 code with the ENDF/B-VII.1 and MCLIP84 libraries. For each design, carbon steel and lead materials were used separately as collimator heavy materials. The performed study focused on both the impact on neutron beam quality and the neutron-gamma background at the exit of the collimator beam tube. An analysis and assessment of the principal findings is presented in this paper, as well as recommendations.

다이오드 레이저를 이용한 탄소강 환봉의 표면변태 경화특성 (Characteristics of Surface Transformation Hardening for Rod-shaped Carbon Steels by Diode Laser)

  • 김종도;강운주;이수진;윤희종;이제훈
    • 한국레이저가공학회지
    • /
    • 제11권4호
    • /
    • pp.7-12
    • /
    • 2008
  • Laser Transformation Hardening(LTH) is one branch of the laser surface modification processes. A lot of energy is needed for the LTH process to elevate workpiece surface to temperature of the austenite transformation($A_3$), which results from utilizing a beam with a larger size and lower power density comparatively. This study is related to the surface hardening for the rod-shaped carbon steel by the high power diode laser whose beam absorptivity is better than conventional types of lasers such as $CO_2$ or Nd:YAG laser. Because a beam proceeds on the rotating specimen, the pretreated hardened-phase can be tempered and softened by the overlapping between hardened tracks. Accordingly, the longitudinal hardness measurement and observation of the micro structure was carried out for an assessment of the hardening characteristics. In addition, a hardening characteristics as a hardenability of materials was compared in the point of view of the hardness distribution and hardening depth and width.

  • PDF

다중 공진형 컨버터를 이용한 이중 캐비티 구조의 4Hz 의료용 루비레이저 시스템 개발 (Development of 4Hz Medical Ruby Laser System with Double Cavities using Multi-Resonant Converter)

  • 이재철;정도;박성욱;허국성;김희제
    • 전기학회논문지
    • /
    • 제64권8호
    • /
    • pp.1207-1211
    • /
    • 2015
  • Various laser systems have been widely used in almost all industrial technologies because they have high energy density, directivity and coherence. Recently the clinical application is becoming wider in medical parts such as incurable disease, diagnosis and so on. Generally, ruby laser beam has the greatest efficacy for removing tattoos, freckle and other skin problem. But current medical ruby laser system has the maximum repetition rate of 2Hz and optical output beam energy of 1J. Many medical doctors really want to have a high repetition ruby laser system because that can reduce the operation time. We investigated a new ruby laser system with high repetition rate of 4Hz using double cavities. Furthermore, we develop a new power supply system adopting zero voltage switching(ZVS) to minimize switching loss by LLC resonant converter designed as 2kW class.

금형용 합금공구강 STD11의 레이저 표면경화 특성 (The Laser hardening Characteristics of the Alloy Tool Steels STD11)

  • 조용무;김재도
    • 열처리공학회지
    • /
    • 제6권4호
    • /
    • pp.230-236
    • /
    • 1993
  • The laser beam hardening has been experimentally tried to find the hardened characteristics of STD11. Experiment was performed on the optimum hardening condition with 2kW $CO_2$ laser. The microstructure of the hardened layers was observed using the microscope. The hardened zones exhibits very high Vickers microhardness of 720 Hv, however, the deoxidation was observed under the surface of hardened area. The case depth of hardened zones is about 0.6mrn and case width is 4mm. FEM-simulation on laser surface hardening of STD11 steel are described. With the proper assumption of the absorbed energy density, the calculated case depth and width in 2 kW $CO_2$ laser hardening were in good agreement with the experimental result. It was found that there is optimum absorbed energy density of STD11.

  • PDF

중첩회로를 적용한 펄스형 Nd:YAG 레이저의 2차 SHG 변환효율에 관한 특성연구 (A study on the Second-Harmonic Generation(SBG) Conversion Characteristics of Nd:YAG Laser adopted Differential Superposition Mesh)

  • 김휘영;박두열
    • 대한전자공학회:학술대회논문집
    • /
    • 대한전자공학회 2001년도 하계종합학술대회 논문집(5)
    • /
    • pp.215-218
    • /
    • 2001
  • A pulsed Nd:YAG laser is used widely for materials processing and medical instrument. It's very important to control the laser energy density in those fields using a pulsed Nd:YAG laser. A pulse repetition rate and a pulse width are regarded as the most dominant factors to control the energy density of laser beam. In this paper, the alternating charge and discharge system was designed to adjust a pulse repetition rate. This system is controlled by microprocessor and allows to frequence an expensive condenser for high frequency to cheap one for low frequency. In addtion, The microcontroller monitors the flow of cooling water, short circuit, and miss firing and so on. We designed Nd:YAG laser firmware with smart microcontroller, and want to explain general matters about the firmware from now.

  • PDF

DESIGN OPTIMIZATION OF RADIATION SHIELDING STRUCTURE FOR LEAD SLOWING-DOWN SPECTROMETER SYSTEM

  • KIM, JEONG DONG;AHN, SANGJOON;LEE, YONG DEOK;PARK, CHANG JE
    • Nuclear Engineering and Technology
    • /
    • 제47권3호
    • /
    • pp.380-387
    • /
    • 2015
  • A lead slowing-down spectrometer (LSDS) system is a promising nondestructive assay technique that enables a quantitative measurement of the isotopic contents of major fissile isotopes in spent nuclear fuel and its pyroprocessing counterparts, such as $^{235}U$, $^{239}Pu$, $^{241}Pu$, and, potentially, minor actinides. The LSDS system currently under development at the Korea Atomic Energy Research Institute (Daejeon, Korea) is planned to utilize a high-flux ($>10^{12}n/cm^2{\cdot}s$) neutron source comprised of a high-energy (30 MeV)/high-current (~2 A) electron beam and a heavy metal target, which results in a very intense and complex radiation field for the facility, thus demanding structural shielding to guarantee the safety. Optimization of the structural shielding design was conducted using MCNPX for neutron dose rate evaluation of several representative hypothetical designs. In order to satisfy the construction cost and neutron attenuation capability of the facility, while simultaneously achieving the aimed dose rate limit (< $0.06{\mu}Sv/h$), a few shielding materials [high-density polyethylene (HDPE)eBorax, $B_4C$, and $Li_2CO_3$] were considered for the main neutron absorber layer, which is encapsulated within the double-sided concrete wall. The MCNP simulation indicated that HDPE-Borax is the most efficient among the aforementioned candidate materials, and the combined thickness of the shielding layers should exceed 100 cm to satisfy the dose limit on the outside surface of the shielding wall of the facility when limiting the thickness of the HDPE-Borax intermediate layer to below 5 cm. However, the shielding wall must include the instrumentation and installation holes for the LSDS system. The radiation leakage through the holes was substantially mitigated by adopting a zigzag-shape with concrete covers on both sides. The suggested optimized design of the shielding structure satisfies the dose rate limit and can be used for the construction of a facility in the near future.