• Title/Summary/Keyword: high critical current density

Search Result 262, Processing Time 0.027 seconds

Fabrication of 6-superconducting layered HTS wire for high engineering critical current density

  • Kim, Gwantae;Ha, Hongsoo;Kim, Hosup;Oh, Sangsoo;Lee, Jaehun;Moon, Seunghyun
    • Progress in Superconductivity and Cryogenics
    • /
    • v.23 no.4
    • /
    • pp.10-13
    • /
    • 2021
  • Recently, cable conductors composed of numerous coated conductors have been developed to transport huge current for large-scale applications, for example accelerators and fusion reactors. Various cable conductors such as CORC (Conductor on round core), Roebel Cable, and TSTC (Twisted stacked tape cable) have been designed and tested to apply for large-scale applications. But, these cable conductors cannot improve the engineering critical current density (Je) because they are made by simple stacking of coated conductors. In this study, multi-HTS (High temperature superconductor) layers on one substrate (MHOS) wire was fabricated to increase the engineering critical current density by using the exfoliation of superconducting layer from substrate and silver diffusion bonding method. By the repetition of these processes, the 10 m long 6-layer MHOS conductor was successfully fabricated without any intermediate layers like buffer or solder. 6-layer MHOS conductor exhibited a high critical current of 2,460A/12mm-w. and high engineering critical current density of 1,367A/mm2 at liquid nitrogen temperature.

High-rate growth $YBa_2$$Cu_3$$O_{7-x}$ thick films and thickness dependence of critical current density (Y$Ba_2$$Cu_3$$O_{7-x}$ 후막의 고속 증착과 임계 전류 밀도의 두께 의존성)

  • Jo W.
    • Progress in Superconductivity
    • /
    • v.6 no.1
    • /
    • pp.13-18
    • /
    • 2004
  • High-.ate in-situ$ YBa_2$Cu$Cu_3$$O_{7-x}$ (YBCO) film growth was demonstrated by means of the electron beam co-evaporation. Even though our oxygen pressure is low, ∼$5 ${\times}$10^{-5}$ Torr, we can synthesize as-grown superconducting YBCO films at a deposition rate of around 10 nm/s. Relatively high temperatures of around 90$0^{\circ}C$ was necessary in this process so far, and it suggests that this temperature at a given oxygen activity allows a Ba-Cu-O liquid formation along with an YBCO epitaxy. Local critical current density shows a clear correlation with local resistivity. Homogeneous transport properties with a large critical current density ($4 ∼ 5 MA/\textrm{cm}^2$ at 77K, 0T) are observed in top faulted region while it is found that the bottom part carries little supercurrent with a large local resistivity. Therefore, it is possible that thickness dependence of critical current density is closely related with a topological variation of good superconducting paths and/or grains in the film bodies. The information derived from it may be useful in the characterization and optimization of superconducting films for electrical power and other applications.

  • PDF

Fabrication of BSCCO high-Tc superconducting current lead (BSCCO 고온초전도 전류도입선의 제조)

  • 하동우;오상수;류강식;장현만
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 1996.05a
    • /
    • pp.252-255
    • /
    • 1996
  • Superconducting current lead is one of the promising applications of the oxide high-Tc superconductors, because they have the advantage of decreasing heat conduction to low temperature region, comparing with a conventional cooper alloy lead. High critical current density is a key factor for the applications such as current lead. (Bi,Pb)$_2$Sr$_2$Ca$_2$Cu$_3$O$\_$x/ high Tc superconductor haute been investigated in terms of critical current density. Bi-2223 superconducting current lead made by CIP and solid state sintering process. Bi-2223 current lead that heat treated at 836$^{\circ}C$ for 240 h in 1/13 P$\_$O$_2$/ had over 150 A/$\textrm{cm}^2$ of critical current density at 77K. We knew that the superconducting properties of tube type current leads were better than rods type of them. And we investigated the relation of Bi-2223 formation and heat treatment condition by XRD and SEM analysis.

  • PDF

Development of the Fabrication Technology of High Tc Superconductor for Electrical Energy Storage (전기 에너지 저장을 위한 초전도 나노 합성 기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.9
    • /
    • pp.442-445
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

Fabrication Technology of high Tc Superconductor for Electrical Equipment (전력기기 초전도 합성기술)

  • Lee, Sang-Heon
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.55 no.7
    • /
    • pp.364-366
    • /
    • 2006
  • In order to realize the commercial application of HTSC materials, it is necessary to develop the fabrication process of high Tc oxide superconductor materials with desired shape and for practical application and high critical current density as well as good mechanical strength which can withstand high lorenz force generated at high magnetic field. Much studies have been concentrated to develop the fabrication technique for high critical current density but still there are a lot of gap which should be overcome for large scale application of HTSC materials at liquid nitrogen temperature. Recently some new fabrication techniques have been developed for YBaCuO bulk superconductor with high mechanical strength and critical current density. In this project, the establishment of fabrication condition and additive effects of second elements were examined so as to improve the related properties to the practical use of YBaCuO superconductor, and we reported the production of the YBaCuO high Tc superconductor by the pyrolysis method.

AC Loss Characteristics of a Single-layered Cylindrical High Temperature Superconductor (단층원통형 고온초전도도체의 교류손실 특성)

  • Ma, Yong-Hu;Li, Zhu-Yong;Ryu, Kyung-Woo;Sohn, Song-Ho;Hwang, Si-Dol
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.20 no.7
    • /
    • pp.626-630
    • /
    • 2007
  • The AC loss is an important issue in the design of the high temperature superconductor (HTS) power cables and fault current limiters. In these applications, a cylindrical HTS conductor is often used. In commercialization of these apparatuses, AC loss is a critical factor but not elucidated completely because of complexities in its measurement, e.g. non-uniform current distribution and phase difference between currents flowing in an individual HTS tape. We have prepared two cylindrical conductors composed of a Bi-2223 tape with different critical current density. In this paper, the AC loss characteristics of the conductors have been experimentally investigated and numerically analyzed. The result show that the measured losses for two conductors are not dependent on both arrangements and contact positions of a voltage lead. This implies that most of loss flux is only in the conductors. The loss for the Bi-2223 conductor with low critical current density is in good agreement with the calculated loss from Monoblock model, whereas the loss measured for the Bi-2223 conductor with high critical current density doesn't coincide with the loss calculated from the Monoblock model. The measured loss is also different from numerically calculated one based on the polygon model especially in low transport current.

Fabrication of Bi-2223 high-Tc superconducting current lead (Bi-2223 고온초전도 전류리드의 제조)

  • Ha, D.W.;Oh, S.S.;Ryu, K.S.;Chang, H.M.
    • Proceedings of the KIEE Conference
    • /
    • 1996.07c
    • /
    • pp.1660-1662
    • /
    • 1996
  • Superconducting current lead is one of the promising applications of the oxide high-Tc superconductors, because they have the advantage of decreasing heat conduction to low temperature region, comparing with a conventional cooper alloy lead. High critical current density is a key factor for the applications such as current lead. $(Bi,Pb)_{2}Sr_{2}Ca_{2}Cu_{3}O_{x}$ high Tc superconductor hase been investigated in terms of critical current density. Bi-2223 superconducting current lead made by CIP and solid state sintering process. Bi-2223 current lead that heat treated at $836\;^{\circ}C$ for 240 h in 1/13 $PO_2$ had over $500\;A/cm^2$ of critical current density at 77K. We knew that the superconducting properties of tube type current leads were better than rods type of them. And we investigated the relation of Bi-2223 formation and heat treatment condition by XRD and SEM analysis.

  • PDF

Current Leads Fabrication of High $T_c$ Bi System Superconductor Using Rapid Cooling Method (급속응고법을 이용한 Bi 계 고온초전도체 전류도입선 제조)

  • 박용민;한진만;류운선;류운선
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.13 no.3
    • /
    • pp.254-258
    • /
    • 2000
  • Current leads of high $T_{c}$ superconductor were fabricated with Bi excess B $i_{2.2}$/S $r_{1.8}$/C $a_{1}$/C $u_{2}$/ $O_{x}$ composition by rapid cooling method. The dimensions of final samples were fixed 3 mm and 8 mm diameter with 50 mm length each To control uniform density the samples were preformed by CIP(Cold Isostatic Press) process and followed by partial or full melting process after raising up to 90$0^{\circ}C$ for 30min. Plate shaped microstructure was clearly observed adjacent to the Ag tube wall and the size of plate was about 100$\mu$m. However the severe destruction of growth orientation was shown in the inner growth part. critical temperature ( $T_{c}$) was about 53~71K after directional growth while Tc was decreased about 77~80 K before directional growth. After directional growth critical current( $I_{c}$) and critical current density( $J_{c}$) in the specimen of 8 mm diameter at 50 K were about 110 A and 280 A/c $m^2$ respectively.pectively.ely.

  • PDF

Mechanical Characteristics of Bi-2223 Wire for High-Tc Superconducting Cable (고온 초전도 케이블용 Bi-2223 선재의 기계적 특성)

  • 백승명;김영석;정순용;김상현
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.11 no.11
    • /
    • pp.1028-1034
    • /
    • 1998
  • Bi-2223 superconductor is known as one of the candidates for practical superconducting wires. Ag-sheathed Bi-2223 superconducting wires were fabricated using the powder-in-tube(PIT) method. When the 19-filaments wire was immersed in liquid nitrogen(77K), maximum critical current density Jc of 62 A/$mm_2$ at 0T was achieved. The critical current density has been shown to depend on the mechanical properties such as tensile stress and bending strain in Ag-sheathed Bi-2223 superconducting wires. The tensile strain for Jc degradation onset was in the range of 0.12~0.3%. In the case of 19-filaments wire, the bending strain is estimated to be smaller than 0.3% for the reasonable Jc value. The observed degradation of the critical current density due to strain effect is inevitable and can be attributed to the formation of microcracks within the superconducting core.

  • PDF