• Title/Summary/Keyword: high burnup

Search Result 111, Processing Time 0.023 seconds

Effect of DUPIC Cycle on CANDU Reactor Safety Parameters

  • Mohamed, Nader M.A.;Badawi, Alya
    • Nuclear Engineering and Technology
    • /
    • v.48 no.5
    • /
    • pp.1109-1119
    • /
    • 2016
  • Although, the direct use of spent pressurized water reactor (PWR) fuel in CANda Deuterium Uranium (CANDU) reactors (DUPIC) cycle is still under investigation, DUPIC cycle is a promising method for uranium utilization improvement, for reduction of high level nuclear waste, and for high degree of proliferation resistance. This paper focuses on the effect of DUPIC cycle on CANDU reactor safety parameters. MCNP6 was used for lattice cell simulation of a typical 3,411 MWth PWR fueled by $UO_2$ enriched to 4.5w/o U-235 to calculate the spent fuel inventories after a burnup of 51.7 MWd/kgU. The code was also used to simulate the lattice cell of CANDU-6 reactor fueled with spent fuel after its fabrication into the standard 37-element fuel bundle. It is assumed a 5-year cooling time between the spent fuel discharges from the PWR to the loading into the CANDU-6. The simulation was carried out to calculate the burnup and the effect of DUPIC fuel on: (1) the power distribution amongst the fuel elements of the bundle; (2) the coolant void reactivity; and (3) the reactor point-kinetics parameters.

Quantitative Evaluation of Criticality According to the Major Influence of Applied with Burnup Credit on Dual-purpose Metal Cask (국내 금속겸용용기의 연소도 이득효과 적용 시 주요영향인자에 따른 정량적 핵임계 평가)

  • Dho, Ho-seog;Kim, Tae-man;Cho, Chun-Hyung
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.13 no.2
    • /
    • pp.141-154
    • /
    • 2015
  • In general, conventional criticality analysis for spent fuel transport/storage systems have been performed based on the assumption of fresh fuel concerning the potential uncertainties from number density calculations of actinide nuclides and fission products in spent fuel. However, these evaluation methods cause financial losses due to an excessive criticality margin. In order to overcome this disadvantage, many studies have recently been conducted to design and commercialize a transportation and storage cask applied to the Burnup Credit (BUC). This study conducted an assessment to ensure criticality safety for reactor operating parameters, axial burn-up profiles and misload accident conditions, which are the factors that are likely to affect criticality safety when the BUC is applied to the dual-purpose cask under development at the KOrea RADioactive waste agency (KORAD). As a result, it was found that criticality resulting from specific power, changed substantially and relied on conditions of low enrichment and high burn-up. Considering the end effect in the case of high burn-up produced a positive-definite result. In particular, the increment of maximum effective multiplication factors due to misloading was 0.18467, confirming that misload is a factor that must be taken into account when applying the BUC. The results of this study may therefore be utilized as references in developing technologies to apply the BUC to domestic models and operational procedures or preventing any misload accidents during the process of spent fuel loading.

HIGH BURNUP FUEL TECHNOLOGY IN KOREA

  • Song, Kun-Woo;Jeong, Yong-Hwan;Kim, Keon-Sik;Bang, Je-Geon;Chun, Tae-Hyun;Kim, Hyung-Kyu;Song, Kee-Nam
    • Nuclear Engineering and Technology
    • /
    • v.40 no.1
    • /
    • pp.21-36
    • /
    • 2008
  • High bum-up fuel technology has been developed through a national R&D program, which covers key technology areas such as claddings, $UO_2$ pellets, spacer grids, performance code, and fuel assembly tests. New cladding alloys were developed through alloy designs, tube fabrication, out-of-pile test and in-reactor test. The new Zr-Nb tubes are found to be much better in their corrosion resistance and creep strength than the Zircaloy-4 tube, owing to an optimized composition and heat treatment of the new Zr-Nb alloys. A new fabrication technology for large grain $UO_2$ pellets was developed using various uranium oxide seeds and a micro-doping of Al. The uranium oxide seeds, which were added to $UO_2$ powder, were prepared by oxidizing and heat-treating scrap $UO_2$ pellets. A $UO_2$ pellet containing tungsten channels was fabricated for a thermal conductivity enhancement. For the fuel performance analysis, new high burnup models were developed and implemented in a code. This code was verified by an international database and our own database. The developed spacer grid has two features of contoured contact spring and hybrid mixing vanes. Mechanical and hydraulic tests showed that the spacer grid is superior in its rodsupporting, wear resistance and CHF performance. Finally, fuel assembly test technology was also developed. Facilities for mechanical and thermal hydraulic tests were constructed and are now in operation. Several achievements are to be utilized soon by the Korea Nuclear Fuel and thereby contribute to the economy and safety of PWR fuel in Korea

Molybdenum release from high burnup spent nuclear fuel at alkaline and hyperalkaline pH

  • Sonia Garcia-Gomez;Javier Gimenez;Ignasi Casas;Jordi Llorca;Joan De Pablo;Albert Martinez-Torrents;Frederic Clarens;Jakub Kokinda;Luis Iglesias;Daniel Serrano-Purroy
    • Nuclear Engineering and Technology
    • /
    • v.56 no.1
    • /
    • pp.34-41
    • /
    • 2024
  • This work presents experimental data and modelling of the release of Mo from high-burnup spent nuclear fuel (63 MWd/kgU) at two different pH values, 8.4 and 13.2 in air. The release of Mo from SF to the solution is around two orders of magnitude higher at pH = 13.2 than at pH = 8.4. The high Mo release at high pH would indicate that Mo would not be congruently released with uranium and would have an important contribution to the Instant Release Fraction, with a value of 5.3%. Parallel experiments with pure non irradiated Mo(s) and XPS determinations indicated that the faster dissolution at pH = 13.2 could be the consequence of the higher releases from metallic Mo in the fuel through a surface complexation mechanism promoted by the OH- and the oxidation of the metal to Mo(VI) via the formation of intermediate Mo(IV) and Mo(V) species.

Current Status and Projection of Spent Nuclear Fuel for Geological Disposal System Design (심지층 처분시스템 설계를 위한 사용후핵연료 현황 분석 및 예측)

  • Cho, Dong-Keun;Choi, Jong-Won;Hahn, Pil-Soo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.4 no.1
    • /
    • pp.87-93
    • /
    • 2006
  • Inventories, and characteristics such as dimension, fuel rod array, weight, $^{235}U$ enrichment, and discharge burnup of spent nuclear fuel (SNF) generated from existing and planed nuclear power plants based on National 2nd Basic Plan for Electric Power Demand and Supply were investigated and projected to support geological disposal system design. The historical and projected inventory by the end 2057 is expected to be 20,500 and 14,800MTU for PWR and CANDU spent nuclear fuel, respectively. The quantity of SNF with initial $^{235}U$ enrichment of 4.5 wt.% and below was shown to be 96.5% in total. Average burnup of SNF revealed $\sim36$ GWD/MTU and $\sim40$ GWD/MTU for the period of 1994-1999 and 2000-2003, respectively. It is expected that the average burnup of SNF will be $\sim45$ GWD/MTU at the end of 2000's. From the comprehensive study, it was concluded that the imaginary SNF with $16\times16$ Korean Standard Fuel Assembly, cross section of $21.4cm\times21.4cm$, length of 453cm, mass of 672 kg, initial $^{235}U$ enrichment of 4.5 wt.%, discharge burnup of 55 GWD/MTU could cover almost all SNFs to be produced by 2057.

  • PDF

Fabrication of Ionization Chamber to Measure the Burnup of Spent Fuel (사용후핵연료 연소도 측정을 위한 이온 챔버 제작)

  • Park, Se-Hwan;Eom, Sung-Ho;Shin, Hee-Sung;Lim, Hye-In;Ha, Jang-Ho;Kim, Han-Soo
    • Journal of Radiation Protection and Research
    • /
    • v.35 no.1
    • /
    • pp.21-25
    • /
    • 2010
  • Burnup of spent fuel should be determined accurately for the safety control of spent fuel. Especially, it is necessary to measure the burnup profile along the nuclear fuel axis. In the present work, an ionization chamber was designed and fabricated to measure the gamma ray profile inside the guide tube of spent fuel. The ionization chamber was composed of three parts; induction part, gas-inlet part, and sensor part. The sensor part had two electrodes; cathode and anode. A guide electrode was considered in the ionization chamber design to make the ionization chamber to be inserted easily into the guide tube. Pure gas (argon and xenon) was inserted into the ionization chamber, and the leakage current and saturation curve were measured to determine the operation characteristics of the ionization chamber. The gamma ray radiation was also measured in relatively high dose environment. The gamma ray profile of the spent fuel will be measured with the ionization chamber.

Scoping Calculations on Criticality and Shielding of the Improved KAERI Reference Disposal System for SNFs (KRS+)

  • Kim, In-Young;Cho, Dong-Keun;Lee, Jongyoul;Choi, Heui-Joo
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.18 no.spc
    • /
    • pp.37-50
    • /
    • 2020
  • In this paper, an overview of the scoping calculation results is provided with respect to criticality and radiation shielding of two KBS-3V type PWR SNF disposal systems and one NWMO-type CANDU SNF disposal system of the improved KAERI reference disposal system for SNFs (KRS+). The results confirmed that the calculated effective multiplication factors (keff) of each disposal system comply with the design criteria (< 0.95). Based on a sensitivity study, the bounding conditions for criticality assumed a flooded container, actinide-only fuel composition, and a decay time of tens of thousands of years. The necessity of mixed loading for some PWR SNFs with high enrichment and low discharge burnup was identified from the evaluated preliminary possible loading area. Furthermore, the absorbed dose rate in the bentonite region was confirmed to be considerably lower than the design criterion (< 1 Gy·hr-1). Entire PWR SNFs with various enrichment and discharge burnup can be deposited in the KRS+ system without any shielding issues. The container thickness applied to the current KRS+ design was clarified as sufficient considering the minimum thickness of the container to satisfy the shielding criterion. In conclusion, the current KRS+ design is suitable in terms of nuclear criticality and radiation shielding.

EXTENDED DRY STORAGE OF USED NUCLEAR FUEL: TECHNICAL ISSUES: A USA PERSPECTIVE

  • Mcconnell, Paul;Hanson, Brady;Lee, Moo;Sorenson, Ken
    • Nuclear Engineering and Technology
    • /
    • v.43 no.5
    • /
    • pp.405-412
    • /
    • 2011
  • Used nuclear fuel will likely be stored dry for extended periods of time in the USA. Until a final disposition pathway is chosen, the storage periods will almost definitely be longer than were originally intended. The ability of the important-tosafety structures, systems, and components (SSCs) to continue to meet storage and transport safety functions over extended times must be determined. It must be assured that there is no significant degradation of the fuel or dry cask storage systems. Also, it is projected that the maximum discharge burnups of the used nuclear fuel will increase. Thus, it is necessary to obtain data on high burnup fuel to demonstrate that the used nuclear fuel remains intact after extended storage. An evaluation was performed to determine the conditions that may lead to failure of dry storage SSCs. This paper documents the initial technical gap analysis performed to identify data and modeling needs to develop the desired technical bases to ensure the safety functions of dry stored fuel.

BEHAVIORS OF MOLYBDENUM IN UO2 FUEL MATRIX

  • Ha, Yeong-Keong;Kim, Jong-Goo;Park, Yang-Soon;Park, Soon-Dal;Song, Kyu-Seok
    • Nuclear Engineering and Technology
    • /
    • v.43 no.3
    • /
    • pp.309-316
    • /
    • 2011
  • Molybdenum is the most abundant fission product since its fission yield is equivalent to that of xenon, and it has a very special role in the chemistry of nuclear fuel because it influences the oxygen potential of $UO_2$ fuel. In this study, the distribution of molybdenum in spent $UO_2$ fuel specimens with 33.3, 41.0 and 57.6 GWd/tU burnup was measured by a LA-ICP-MS system and the reproducibility of the measured data was obtained. The Mo distribution was almost constant along the radius of a fuel except an increase at the periphery of the fuel. It showed a drop in reproducibility with relatively high deviation of measured values for the highest burnup fuel. To explain this, the state of molybdenum in a $UO_2$ matrix and its effect on the oxidation behavior of $UO_2$ were investigated. The low reproducibility was explained by the segregation of molybdenum, and the inhibition of oxidation by the molybdenum was also observed.