DOI QR코드

DOI QR Code

Molybdenum release from high burnup spent nuclear fuel at alkaline and hyperalkaline pH

  • Sonia Garcia-Gomez (Department of Chemical Engineering, EEBE and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politecnica de Catalunya (UPC)) ;
  • Javier Gimenez (Department of Chemical Engineering, EEBE and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politecnica de Catalunya (UPC)) ;
  • Ignasi Casas (Department of Chemical Engineering, EEBE and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politecnica de Catalunya (UPC)) ;
  • Jordi Llorca (Department of Chemical Engineering, EEBE and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politecnica de Catalunya (UPC)) ;
  • Joan De Pablo (Department of Chemical Engineering, EEBE and Barcelona Research Center in Multiscale Science and Engineering, Universitat Politecnica de Catalunya (UPC)) ;
  • Albert Martinez-Torrents (EURECAT, Centre Tecnologic de Catalunya) ;
  • Frederic Clarens (EURECAT, Centre Tecnologic de Catalunya) ;
  • Jakub Kokinda (EURECAT, Centre Tecnologic de Catalunya) ;
  • Luis Iglesias (EURECAT, Centre Tecnologic de Catalunya) ;
  • Daniel Serrano-Purroy (European Commission, Joint Research Centre (JRC))
  • Received : 2023.04.25
  • Accepted : 2023.08.14
  • Published : 2024.01.25

Abstract

This work presents experimental data and modelling of the release of Mo from high-burnup spent nuclear fuel (63 MWd/kgU) at two different pH values, 8.4 and 13.2 in air. The release of Mo from SF to the solution is around two orders of magnitude higher at pH = 13.2 than at pH = 8.4. The high Mo release at high pH would indicate that Mo would not be congruently released with uranium and would have an important contribution to the Instant Release Fraction, with a value of 5.3%. Parallel experiments with pure non irradiated Mo(s) and XPS determinations indicated that the faster dissolution at pH = 13.2 could be the consequence of the higher releases from metallic Mo in the fuel through a surface complexation mechanism promoted by the OH- and the oxidation of the metal to Mo(VI) via the formation of intermediate Mo(IV) and Mo(V) species.

Keywords

Acknowledgement

This work has been financially supported by Ministerio de Economia y Competitividad (Spain) with the project PID2020-116839RB-I00 and ENRESA (Empresa Nacional de Residuos Radioactivos de Espana) under CO-IA-22-010 and ENRESA/JRC/Eurecat 33924 agreement. Finantial support is also acknowledged to The Agency for Business Competitiveness (ACCIO) and the European Union's European Atomic Energy Community's (Euratom) Horizon 2020 Reasearch and Training Programme (H2020-NFRP-2016-2017-1), section B - Contribute to the Development of Solutions for the Management of Radioactive Waste, topic NFRP 6: Addressing key priority R&I issues for the first-of-the-kind geological repositories under grant agreement n° 755443 (Modern Spent Fuel Dissolution and Chemistry in Failed Container Conditions, DisCo project). S. G.-G. wants to acknowledge the fellowship with reference code PRE2018-085618 and J.L. is a Serra Hunter Fellow and is grateful to the ICREA Academia program.

References

  1. Y.K. Ha, J.G. Kim, Y.S. Park, S.D. Park, K. Song, Behavior of molybdenum in UO2 fuel matrix, Nucl. Eng. Technol. 43 (2011) 309-316.
  2. H. Kleykamp, The chemical state of the fission products in oxide fuels, J. Nucl. Mater. 131 (1984) 221-246.
  3. S. Nicoll, Hj. Matzke, R.W. Grimes, C.R.A. Catlow, The behaviour of single atoms of molybdenum in urania, J. Nucl. Mater. 240 (1997) 185-195.
  4. L. Desgranges, B. Pasquet, M. Fraczkiewicz, Interpretation of the molybdenum behaviour in irradiated UO2 using a point defect approach, Nucl. Instrum. Methods Phys. Res. B 266 (2008) 3018-3022.
  5. P. Martin, M. Ripert, G. Carlot, Ph. Parent, C. Laffon, A study of molybdenum behaviour in UO2 by X-ray absorption spectroscopy, J. Nucl. Mater. 326 (2004) 132-143.
  6. A. Martinez-Torrents, D. Serrano-Purroy, I. Casas, J. De Pablo, Influence of the interpellet space to the instant release fraction determination of a commercial UO2 boiling water reactor spent nuclear fuel, J. Nucl. Mater. 499 (2018) 9-17.
  7. D. Serrano-Purroy, I. Casas, E. Gonz' alez-Robles, J.-P. Glatz, D. Wegen, F. Clarens, J. Gim'enez, J. de Pablo, A. Martinez-Esparza, Dynamic leaching studies of 48 MWd/kgU UO2 commercial spent nuclear fuel under oxic conditions, J. Nucl. Mater. 434 (2013) 451-460.
  8. E. Gonzalez-Robles, D. Serrano-Purroy, R. Sureda, I. Casas, J. de Pablo, Dissolution experiments of commercial PWR (52 MWd/kgU) and BWR (53 MWd/kgU) spent nuclear fuel cladded segments in bicarbonate water under oxidizing conditions. Experimental determination of matrix and instant release fraction, J. Nucl. Mater. 465 (2015) 63-70.
  9. D. Serrano-Purroy, I. Casas, E. Gonzalez-Robles, J.-P. Glatz, D. Wegen, F. Clarens, J. Gimenez, J. de Pablo, A. Martinez-Esparza, Instant release fraction and matrix release of high burn-up UO2 spent nuclear fuel: effect of high burn-up structure and leaching solution composition, J. Nucl. Mater. 427 (2012) 249-258.
  10. A. Martinez-Torrents, D. Serrano-Purroy, R. Sureda, I. Casas, J. de Pablo, Instant release fraction corrosion studies of commercial UO2 BWR spent nuclear fuel, J. Nucl. Mater. 488 (2017) 302-313, https://doi.org/10.1016/j.jnucmat.2017.03.022.
  11. A. Espriu-Gascon, A. Martinez-Torrents, D. Serrano-Purroy, J. Gimenez, J. de Pablo, I. Casas, Contribution of phases segregated from the UO2 matrix to the release of radionuclides from spent nuclear fuel and duration of the Instant Release Fraction (IRF), J. Nucl. Mater. 532 (2020), 152066.
  12. I. Pointeau, C. Landesman, E. Giffaut, P. Reiller, Reproducibility of the uptake of U (VI) onto degraded cement pastes and calcium silicate hydrate phases, Radiochim. Acta 92 (2004) 645.
  13. E. Wieland, C.A. Johnson, B. Lothenbach, F. Winnefeld, Mechanisms and modelling of waste/cement interactions - survey of topics presented at the Meiringen Workshop, Mater. Res. Soc. Symp. Proc. 932 (2006) 663.
  14. T. Heath, J. Schofield, A. Shelton, Understanding cementitious backfill interactions with groundwater components," Appl, Geochemistry 113 (2019), 104495.
  15. L. Wang, Near-field chemistry of a HLW/SF repository in Boom Clay - scoping calculations relevant to the supercontainer design, in: External Report of the Belgian Nuclear Research Centre, SCK-CEN, 2009.
  16. M.R. Savina, B.H. Isselhardt, D.Z. Shulaker, M. Robel, A.J. Conant, B.J. Ade, Simultaneous isotopic analysis of fission product Sr, Mo, and Ru in spent nuclear fuel particles by resonance ionization mass spectrometry" Nature, Sci. Rep. 13 (2023) 5193.
  17. J. Bruno, I. Casas, I. Puigdomenech, The kinetics of dissolution of UO2 under reducing conditions and the influence of an oxidized surface layer (UO2+x): application of a continuous flow-through reactor, Geochim. Cosmochim. Acta 55 (1991) 647-658.
  18. J. Baltrusaitis, B. Mendoza-Sanchez, V. Fernandez, R. Veenstra, N. Dukstiene, A. Roberts, N. Fairley, Generalized molybdenum oxide surface chemical state XPS determination via informed amorphous sample model, Appl. Surf. Sci. 326 (2015) 151-161.
  19. J.G. Choi, L.T. Thompson, XPS study of as-prepared and reduced molybdenum oxides, Appl. Surf. Sci. 93 (1996) 143-149.
  20. O. Marin-Flores, L. Scudiero, S. Ha, X-ray diffraction and photoelectron spectroscopy studies of MoO2 as catalyst for the partial oxidation of isooctane, Surf. Sci. 603 (2009) 2327-2332.
  21. D.O. Scanlon, G.W. Watson, D.J. Payne, G.R. Atkinson, R.G. Egdell, D.S.L. Law, Theoretical and experimental study of the electronic structures of MoO3 and MoO2, J. Phys. Chem. C 114 (2010) 4636-4645.
  22. P.A. Spevack, N.S. McIntyre, Thermal reduction of MoO3, J. Phys. Chem. 96 (1992) 9029-9035.
  23. L. Iglesias, J. Kokinda, D. Serrano-Purroy, A. Martinez-Torrens, I. Casas, J. de Pablo, F. Clarens, J. Gimenez, "Dissolution of high Burn-Up Spent Nuclear Fuel at high-pH in the presence of calcium and silicon," Submitted to Radiochimica Acta.
  24. Th. Mennecart, Ch. Cachoir, K. Lemmens, Fast release from clad and declad spent UOX PWR fuel segments in a bicarbonate solution under anoxic conditions, J. Nucl. Mater. 557 (2021), 153257.
  25. S. Rollin, K. Spahiu, U.-B. Eklund, Determination of dissolution rates of spent fuel in carbonate solutions under different redox conditions with a flow-through experiment, J. Nucl. Mater. 297 (2001) 231-243.
  26. W. Stumm, R. Wollast, Coordination chemistry of weathering: kinetics of the surface-controlled dissolution of oxide minerals, Rev. Geophys. 28 (1990) 53-69.
  27. M. Schalenbach, O. Kasian, M. Ledendecker, F.D. Speck, A.M. Mingers, K.J. J. Mayrhofer, S. Cherevko, The electrochemical dissolution of noble metals in alkaline media, Electrocatalysis 9 (2018) 153-161.
  28. S. Cherevko, A.R. Zeradjanin, G.P. Keeley, K.J.J. Mayrhofer, A Comparative study on gold and platinum dissolution in acidic and alkaline media, J. Electrochem. Soc. 161 (2014) H822-H830.
  29. V.S. Saji, Ch.-W. Lee, Molybdenum, molybdenum oxides, and their electrochemistry, ChemSusChem 5 (2012) 1146-1161.
  30. M. Petrova, M. Bojinov, S. Zanna, Ph. Marcus, Mechanism of anodic oxidation of molybdenum in nearly-neutral electrolytes studied by electrochemical impedance spectroscopy and X-ray photoelectron spectroscopy, Electrochim. Acta 56 (2011) 7899-7906.
  31. D. Briggs (Chapter 22) "X-ray Photoelectron Spectroscopy", in: D.E. Packham (Ed.), Handbook of Adhesion, second ed., John Wiley & Sons, Ltd, 2005.
  32. C.D. Wagner, W.M. Riggs, L.E. Davis, J.F. Moulder, G.E. Mullenberg, Handbook of X-Ray Photoelectron, Spectroscopy" Perkin-Elmer Corporation Publ., USA), 1979.
  33. B. Mendoza-Sanchez, T. Brousse, C. Ramirez-Castro, V. Nicolosi, P.S. Grant, An investigation of nanostructured thin film α-MoO3 based supercapacitor electrodes in an aqueous electrolyte, Electrochim. Acta 91 (2013) 253-260.
  34. F. Nacimiento, M. Cabello, R. Alcantara, C. Perez-Vicente, P. Lavela, J.L. Tirado, Exploring an aluminum ion battery based on molybdite as working electrode and ionic liquid as electrolyte, J. Electrochem. Soc. 165 (2018) A2994-A2999.