• Title/Summary/Keyword: high amylose rice flour

Search Result 42, Processing Time 0.032 seconds

Comparison of Some Characteristics Relevant to Rice Bread Processing between Brown and Milled Rice (백미와 현미 쌀빵의 특성 비교)

  • 강미영;최영희;최해춘
    • Korean journal of food and cookery science
    • /
    • v.13 no.1
    • /
    • pp.64-69
    • /
    • 1997
  • The experiments of rice bread processing were carried out to compare the varietal difference in processing adaptability to rice bread between brown and milled rice flour, and to analyze the interrelations among chemical properties of rice grain and some characteristics relevant to rice bread processing and quality There was varietal difference in adaptability to rice bread processing in both brown and milled rice, but there was not significant adaptability difference between brown and milled rice flours to rice bread processing. However, there was remarkable adaptability difference between brown and milled rice flours to rice bread processing in some rice varieties. Three high-amylose rices AC 27, IR 44, Suweonjo showed high quality of milled rice bread among tested rice materials. Brown rice revealed better adaptability to rice bread processing compared with milled rice in all varieties except the above three varieties. Especially, the glutinous rice Hangangchalbyeo failed to normal formation of rice bread from milled rice flour, but it showed the successful formation of rice bread from brown rice flour. The interrelations among chemical components of rice grain and some characteristics relevant to rice bread processing and quality exhibited quite different tendency between brown and milled rices. In the case of rice bread processing by brown rice flour, the larger volume expansion of dough during fermentation made the more springy rice bread and the more moist rice bread showed the more soft and cohesive physical property. In the case of rice bread processing by milled rice flour, the lower protein of rice flour was closely associated with the more moistness of rice bread and the higher lipid led to the more uniformal air pore distribution, the smaller pore size and the lower springiness of rice bread. Also, the larger volume expansion of dough during fermentation made the better loaf formation and the larger pore size of rice bread. The better loaf formation of rice bread revealed the softer hardness and the lower chewiness, and the lower springiness was closely correlated with the more uniformal size distribution of air pore and the smaller pore size in rice bread.

  • PDF

Development of Near Isogenic Lines and Genetic Analysis for Alkali Digestibility of Rice Grain

  • Kim, Kwang-Ho;Kim, Doo-Hwan;Lee, Jeong-Heui
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.46 no.1
    • /
    • pp.12-16
    • /
    • 2001
  • In order to develop near isogenic lines (NILs) the heterozygous rice plants for alkali digestibility value(ADV) were selected and tested in every generation from $F_5$to $F_9$ of a cross, Seratus malam/Suwon 345. Finally several sets of NILs, which were six low ADV lines and four medium-high ADV lines, were selected among $F_{10}$ lines. No differences of the plant growth characteristics, amylose content and protein content of rice grain were found between low and medium-high ADV lines. Rice flour of low ADV lines showed longer gel length in gel consistency test than medium-high ADV lines, and also showed different gelatinization characteristics measured by rapid visco analyzer compared with medium-high ADV lines. The result of genetic analysis indicated that ADV-NILs developed were differed in a pair of major gene controlling ADV, and low ADV was dominant over medium-high ADV.

  • PDF

Comparison of Some Characteristics Relevant to Rice Bread made from Eight Varieties of Endosperm Mutants between Brown and Milled Rice (8품종 변이체 벼의 현미 및 백미빵 가공성 비교)

  • Kang, Mi-Young;Koh, Hee-Jong;Han, Ji-Yeun
    • Korean Journal of Food Science and Technology
    • /
    • v.32 no.1
    • /
    • pp.82-89
    • /
    • 2000
  • Relationship among the properties of rice, such as amylose contents of endosperm starch, sugar content and amylogram characteristics, and processing properties for rice bread was studied. The amylose content of the rice cultivars decreased in order of Nampungbyeo, Whachungbyeo>Punchilmi(fl)>Nampung CB243> Whachung du-I, Nampung EM90>Whachung-chalbyeo>shr. Protein contents of rice tested in this study were almost same level, however, shr, the high sugar rice, showed the highest protein content scored as 8.2%. The study showed that the amylose contents of rice cultivars were negatively correlated with their protein contents. The starting temperatures for gelatinization of the flour of Punchilmi(fl) and Shurunken(shr) were low, however, in case of Whachungbyeo and Nampungbyeo plus their mutants derived from the both, the stickiness and the hardness of the flours were shown to be positively correlated with the amylose contents. In addition, loaf volume tested using sensory evaluation and overall quality showed the same tendency. Among the rice cultivars tested in this study, breads made from white rice had good qualities in bread making process than those made from brown rice. The bread made from Nampungbyeo was demonstrated to have highest score e in overall quality, as well as the lowest retrogradation index during storage at $4^{\circ}C$

  • PDF

Evaluating the agronomic characteristics and yield variations of 'Saemimyeon' by changing transplanting and harvesting time

  • Bae, Hyun Kyung;Oh, Seong Hwan;Yi, Hwi Jong;Seo, Jong Ho;Hwang, Chung Dong;Choi, Won Yeung;Kim, Sang Yeol;Oh, Myung Kyu
    • Proceedings of the Korean Society of Crop Science Conference
    • /
    • 2017.06a
    • /
    • pp.300-300
    • /
    • 2017
  • 'Saemimyeon' a Tongil-type rice variety (Indica ${\times}$ Japonica), which contains high amylose contents is suitable for rice noodle production. Nowadays, the major parts of rice processing industry that includes products like rice flour and noodles are expected to partially replace wheat flour market. The volume of rice noodle market is getting bigger and can contribute to the rice surplus and farmer's income. This study was carried out to promote productivity and flour-making quality of 'Saemimyeon' by finding the most suitable transplanting and harvesting times. The transplanting days used were May $10^{th}$, May $17^{th}$, May $24^{th}$, May $31^{th}$, June $7^{th}$ and June $14^{th}$ and the planting distance used was 30 x 12cm. In addition, harvesting time was determined by days after heading time (40, 45, 50, 55 and 60 days). The field experiment was conducted at the experimental field in Miryang (Southern plain area of Korea) from 2015 to 2016. Our results suggest that the optimum transplanting days were from May $24^{th}$ to May $31^{th}$ which resulted to an average yield of 748~751kg/10a. Interestingly, yield was sharply decreased below 700kg/10a before May $10^{th}$ and after June $7^{th}$. The average grain filling rate before May $31^{th}$ was more than 83% but it declined to 75% after June $7^{th}$. The average temperature ranges from heading time to harvesting time was $ 21\sim25^{\circ}C$ and the estimated optimal temperature was $23.4^{\circ}C$ which is similar to May $24^{th}$ by regression equation. We found that the optimal harvest time was 45~50 days after heading time. It is hypothesized that low temperature at seed maturation time caused the lower grain filling rate therefore 'Saemimyeon' need to be transplanted before May $31^{th}$ for higher productivity. We found no statistical variation in amylose contents among experimental plots (28.2~30.4%). We conclude that the productivity of 'Saemimyeon' highly depends on temperature that is critical for grain filling stage controlled by transplanting time.

  • PDF

Digestive, Physical and Sensory Properties of Cookies Made of Dry-Heated OSA-High Amylose Rice Starch (변성 고아미 쌀전분을 이용한 쿠키의 소화율과 물리적 및 관능적 특성)

  • Han, Jung-Ah
    • Korean Journal of Food Science and Technology
    • /
    • v.41 no.6
    • /
    • pp.668-672
    • /
    • 2009
  • Cookies containing wheat flour mixed with 10, 30 or 50% esterified with octenylsuccinic anhydride (OSA, 3%) and dry-heated ($130^{\circ}C$, 2 hr) high amylose rice (Goami 2) starch (DH-OSAR) were prepared and then their physical and digestive properties were evaluated. When the amount of added DH-OSAR increased, the hardness and brittleness of the cookies decreased, and L (brightness) value increased. For the digestive properties, the cookies containing 50% DH-OSAR significantly increased the amount of slowly digestible starch (SDS), and decreased the amount of rapidly digestible starch (RDS), resulting in the lowest expected Glycemic Index (eGI) among tested cookies. Although the cookies containing DHOSAR were inferior to the control, the addition of xanthan gum (0.5% based on total powder amount) significantly improved their textural and sensory properties. Specially, the cookies containing 50% DH-OSAR and the addition of 0.5% xanthan gum showed the lowest eGI value, maintaining the improved textural and sensory properties.

Physicochemical Properties of Rice-based Expanded Snacks according to Extrusion Conditions (Extrusion 제조 조건에 따른 쌀 스낵 제품의 이화학적 품질특성)

  • Eun, Jong-Bang;Hsieh, Fu-Hung;Choi, Ok-Ja
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.43 no.9
    • /
    • pp.1407-1414
    • /
    • 2014
  • Physicochemical properties of rice-based expanded snacks extruded with rice flour, high amylose starch, and isolated soy protein were investigated using a twin-screw extruder. The ingredients were extruded at various feed moisture contents (19~23%) and screw speeds (200~400 rpm) at a constant feed rate (43.4 kg/hr). Bulk density and apparent density of rice snacks were 0.06~0.21, and 0.55~0.65 respectively. Bulk density, apparent density, water absorption index, and breaking strength of rice snacks increased with increasing feed moisture content and decreasing screw speed. However, expansion and water solubility index of rice snacks increased with decreasing feed moisture content and increasing screw speed. Hunter's color L values of rice snacks was lower with increasing screw speed at feed moisture contents of 19% and 21%, but was not significantly different from a feed moisture content of 23%. On the other hand, a and b values of rice snacks were higher with increasing screw speed a feed moisture content of 19%. X-ray diffraction intensity of rice snacks decreased with decreasing feed moisture content and increasing screw speed. X-ray diffraction of rice snacks was V-type at feed moisture contents of 19% and 21% and screw speeds of 300, and 400 rpm. In the microstructure of the cross section of rice snacks, air cells in rice snacks were not well formed, and cell walls were thicker with increasing feed moisture content and decreasing screw speed.

Quality Characteristics of Jeung-pyun Added with Rice Mash of Various Cultivars (쌀 품종별 당화액 첨가에 따른 증편의 품질특성)

  • In-Kyoung, Jung;Hyun-Sook, Jung
    • Journal of the Korean Society of Food Culture
    • /
    • v.37 no.6
    • /
    • pp.510-518
    • /
    • 2022
  • This study compares the quality characteristics of Jeung-pyun prepared by supplementing with rice mash of various cultivars. Results showed high contents of crude protein and crude ash in Saeilmi. The highest and lowest amylose contents were obtained in Goami4 and Baekjinju, respectively. Saeilmi had the highest water absorption index (WAI) of rice flour, whereas the highest water-soluble index (WSI) was obtained in Baekokchal. Maximum viscosity, minimum viscosity, and breakdown were high in Baekjinju, and high cooling viscosity and setback levels were determined in Goami4. The sugar content, total free sugar, and pH of the rice mash were highest in Baekjinju. The highest volume of Jeung-pyun was obtained with Saeilmi supplementation, whereas the specific volume was highest in Baekokchal. Evaluation of L, a, and b color values of Jeung-pyun revealed the maximum L value in Saeilmi, a value in Goami4, and b value in Baekjinju. The physical properties of Jeung-pyun were lower in all supplemented groups compared to the control group for hardness, adhesiveness, and chewiness. The lowest chewiness was obtained in Baekokchal-supplemented Jeung-pyun. We conclude that supplementation with different varieties of rice affects the quality characteristics of Jeung-pyun, which are important factors for manufacturing processed foods.

Physicochemical Properties of Non-waxy Rice Flour Affected by Grinding Methods and Steeping Times (제분방법 및 수침시간을 달리한 멥쌀가루의 이화학적 특성)

  • Kim, Rae-Young;Kim, Chang-Soon;Kim, Hyuk-Il
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.38 no.8
    • /
    • pp.1076-1083
    • /
    • 2009
  • The physicochemical properties of rice flour produced by 3 different grinding methods using various steeping times (3, 6, 9, and 12 hrs) were investigated. Roller mill gave coarse rice flour; the pin mill, intermediate flour; and mixed when both (roller & pin mills) were used. With the increase of steeping times, the rice flours became finer and the contents of crude protein, crude fat and crude ash decreased. Damaged starch was noticeably high in rice flour by roller & pin mills compared to those by roller or pin mills alone. Amylose contents, solubility and swelling power increased as the steeping times increased. Water binding capacity was the highest in roller & pin mills, followed by pin mill. In scanning electron microscope (SEM), pin mill showed distribution of separated fine particles of rice flours. The physicochemical properties of rice flours showed many differences by steeping times of rice and grinding methods. With sufficient steeping times, the rice flours obtained from pin mill were relatively fine having less damaged starch.

Current Status and Perspectives in Varietal Improvement of Rice Cultivars for High-Quality and Value-Added Products (쌀 품질 고급화 및 고부가가치화를 위한 육종현황과 전망)

  • 최해춘
    • KOREAN JOURNAL OF CROP SCIENCE
    • /
    • v.47
    • /
    • pp.15-32
    • /
    • 2002
  • The endeavors enhancing the grain quality of high-yielding japonica rice were steadily continued during 1980s-1990s along with the self-sufficiency of rice production and the increasing demands of high-quality rices. During this time, considerably great progress and success was obtained in development of high-quality japonica cultivars and quality evaluation techniques including the elucidation of interrelationship between the physicochemical properties of rice grain and the physical or palatability components of cooked rice. In 1990s, some high-quality japonica rice cultivars and special rices adaptable for food processing such as large kernel, chalky endosperm, aromatic and colored rices were developed and its objective preference and utility was also examined by a palatability meter, rapid-visco analyzer and texture analyzer, Recently, new special rices such as extremely low-amylose dull or opaque non-glutinous endosperm mutants were developed. Also, a high-lysine rice variety was developed for higher nutritional utility. The water uptake rate and the maximum water absorption ratio showed significantly negative correlations with the K/Mg ratio and alkali digestion value(ADV) of milled rice. The rice materials showing the higher amount of hot water absorption exhibited the larger volume expansion of cooked rice. The harder rices with lower moisture content revealed the higher rate of water uptake at twenty minutes after soaking and the higher ratio of maximum water uptake under the room temperature condition. These water uptake characteristics were not associated with the protein and amylose contents of milled rice and the palatability of cooked rice. The water/rice ratio (in w/w basis) for optimum cooking was averaged to 1.52 in dry milled rices (12% wet basis) with varietal range from 1.45 to 1.61 and the expansion ratio of milled rice after proper boiling was average to 2.63(in v/v basis). The major physicochemical components of rice grain associated with the palatability of cooked rice were examined using japonica rice materials showing narrow varietal variation in grain size and shape, alkali digestibility, gel consistency, amylose and protein contents, but considerable difference in appearance and texture of cooked rice. The glossiness or gross palatability score of cooked rice were closely associated with the peak, hot paste and consistency viscosities of viscosities with year difference. The high-quality rice variety "IIpumbyeo" showed less portion of amylose on the outer layer of milled rice grain and less and slower change in iodine blue value of extracted paste during twenty minutes of boiling. This highly palatable rice also exhibited very fine net structure in outer layer and fine-spongy and well-swollen shape of gelatinized starch granules in inner layer and core of cooked rice kernel compared with the poor palatable rice through image of scanning electronic microscope. Gross sensory score of cooked rice could be estimated by multiple linear regression formula, deduced from relationship between rice quality components mentioned above and eating quality of cooked rice, with high probability of determination. The $\alpha$-amylose-iodine method was adopted for checking the varietal difference in retrogradation of cooked rice. The rice cultivars revealing the relatively slow retrogradation in aged cooked rice were IIpumbyeo, Chucheongyeo, Sasanishiki, Jinbubyeo and Koshihikari. A Tonsil-type rice, Taebaegbyeo, and a japonica cultivar, Seomjinbyeo, showed the relatively fast deterioration of cooked rice. Generally, the better rice cultivars in eating quality of cooked rice showed less retrogradation and much sponginess in cooled cooked rice. Also, the rice varieties exhibiting less retrogradation in cooled cooked rice revealed higher hot viscosity and lower cool viscosity of rice flour in amylogram. The sponginess of cooled cooked rice was closely associated with magnesium content and volume expansion of cooked rice. The hardness-changed ratio of cooked rice by cooling was negatively correlated with solids amount extracted during boiling and volume expansion of cooked rice. The major physicochemical properties of rice grain closely related to the palatability of cooked rice may be directly or indirectly associated with the retrogradation characteristics of cooked rice. The softer gel consistency and lower amylose content in milled rice revealed the higher ratio of popped rice and larger bulk density of popping. The stronger hardness of rice grain showed relatively higher ratio of popping and the more chalky or less translucent rice exhibited the lower ratio of intact popped brown rice. The potassium and magnesium contents of milled rice were negatively associated with gross score of noodle making mixed with wheat flour in half and the better rice for noodle making revealed relatively less amount of solid extraction during boiling. The more volume expansion of batters for making brown rice bread resulted the better loaf formation and more springiness in rice breed. The higher protein rices produced relatively the more moist white rice bread. The springiness of rice bread was also significantly correlated with high amylose content and hard gel consistency. The completely chalky and large grain rices showed better suitability far fermentation and brewing. The glutinous rice were classified into nine different varietal groups based on various physicochemical and structural characteristics of endosperm. There was some close associations among these grain properties and large varietal difference in suitability to various traditional food processing. Our breeding efforts on improvement of rice quality for high palatability and processing utility or value-adding products in the future should focus on not only continuous enhancement of marketing and eating qualities but also the diversification in morphological, physicochemical and nutritional characteristics of rice grain suitable for processing various value-added rice foods.ice foods.

Physicochemical and Cooking Characteristics of Non-waxy Soft Brown Rice (연질현미의 이화학적 및 취반 특성)

  • Park, Jihye;Shin, Malshick
    • Korean journal of food and cookery science
    • /
    • v.32 no.5
    • /
    • pp.531-540
    • /
    • 2016
  • Purpose: To improve the cooking quality of brown rice, newly inbred soft rice cultivars were investigated. Methods: The physicochemical properties of brown rice flour and water absorption patterns and cooking characteristics of brown rice grain were compared to Ilmi white and brown rice. Results: General composition and total dietary fiber contents of five rices were significantly different with higher ash, protein, and total dietary fiber contents in soft brown rice than white rice. The hardness of raw rice grain was higher in Ilmi brown rice than in soft brown rice. The water absorption increased rapidly in 30 min of white rice and in 4-6 h of brown rices. The apparent amylose content of soft brown rice was lower than that of Ilmi rice. The initial pasting temperature and all viscosities were significantly different, but the trend was not similar. The textural properties of hardness and roughness were higher, but adhesiveness, cohesiveness, and stickiness were lower in Ilmi brown rice than white and soft brown rices. In sensory preference test, not only textural properties, hardness, adhesiveness, cohesiveness, stickiness, and roughness, but also color, glossiness, and roasted flavor were higher in soft brown rices. Especially soft brown rice B showed the best cooking quality among all rices. Conclusion: The results of the study suggested that soft brown rice is developed for cooking with high nutritional and functional quality.