• Title/Summary/Keyword: high Strength concrete

Search Result 4,109, Processing Time 0.029 seconds

Experiments for the Fatigue Behavior of High Strength Concrete (고강도콘크리트의 피로거동에 관한 실험적 연구)

  • 김진근;김윤용
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1992.10a
    • /
    • pp.161-166
    • /
    • 1992
  • In this paper, the effect of compressive strength on the fatigue behavior of plain concrete was studied. The fatigue behavior of plain concrete in uniaxial compression is somewhat affected by the compressive strength of the concrete. Concrete cylindrical specimens(100$\times$200mm) with compressive strength of 265kg/$\textrm{cm}^2$, 530kg/$\textrm{cm}^2$ , 860kg/$\textrm{cm}^2$ and 1053kg/$\textrm{cm}^2$ were tested and analyzed on the fatigue strength, In addition to fatigue strength, the deformation characteristics of the concrete subjected to fatigue loading was investigated. The fatigue strength was decreased for the high-strength concrete. The deformation studies indicated that the irrecoverable strain in normal strength concrete is greater than that in high strength concrete.

  • PDF

Fundamental Study on the Strength and Durability of Ultra-high Strength Concrete (초고강도 콘크리트의 강도 및 내구특성에 대한 기초적 연구)

  • Kang Seong Mook;Choi Jae Jin;Yoo Jung Hoon;Choi Doo Sun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.395-398
    • /
    • 2005
  • In recent years, the applications of high-strength concrete have increased, and high-strength concrete has now been used in many parts of the world. The growth has been possible as a. result of recent developments in material technology and a demand for higher-strength concrete in Korea. In this study, we have an object to produce the ultra-high strength concrete(Super-Con) of over 100MPa with low price materials. First, the binders for Super-Con should be selected by the tests; setting time of paste, flow value and strength of mortar. From the test results, the binders are blended with ordinary portland cement, pulverized portland cement and silica fume. Fundamentally the compressive strength, frost resistance and chloride resistance are investigated.

  • PDF

An Experimental Study on Manufacturing Ultra-High Strength Concrete of 2300kg/$\textrm{cm}^2$ Compressive Strength -Part 2, The Experiment on the Manufacture of the U-H-S Concrete- (압축강도2300kg/$\textrm{cm}^2$의 초고강도콘크리트의 개발에 관한 실험적 연구 -제 2보, 초고강도콘크리트의 제조에 관한 실험을 중심으로-)

  • 김진만;최희용;김규용;김무한
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.252-255
    • /
    • 1995
  • To reduce the size of structural members, high strength concrete has recently been utilized for structure such as ultra-high-rise buildings and prestressed concrete bridges in North America. And its compressive strength has gone up to 1300kgf/$\textrm{cm}^2$. In Japan. research on high-strength concrete has been undertaken on a large scale by the national enterprise so-called New RC Project, and this Project purposed to develop the design compressive strength of 1200kgf/$\textrm{cm}^2$. Considering these circumstance. the aim of this experimental study is to develop ultra-high-strength concrete with compressive strenght over 2300kgf/$\textrm{cm}^2$ with domestic current materials. There are so many factors which influence the manufacturing of ultra-high-strength concrete. The experimental factors selected in this study are mixing methods. curing methods. water-binder ratio, maximum size of coarse aggregate, and the replacement proportion of cement by silica fume. The results of this expermental study show that it is possible to develop the ultra-high-stength concrete with compressive strength over 2300kgf/$\textrm{cm}^2$.

  • PDF

The Application of High Strength Concrete on Woo-Sung Character 199 Project (우성 캐릭터 199에 고강도 콘크리트 적용에 관한 연구)

  • 신성우;안종문;김원섭;김세현
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.04a
    • /
    • pp.357-362
    • /
    • 1996
  • The objective of this study is to investigate material properties and quality control of cast-in-place high strength concrete. High strength concrete with a design strength of 420 kgf/$\textrm{cm}^2$ is successfully produced at a ready-mixed concrete plant, and placed at a tall building. Many laboratory and field tests are carried out for the successful construction of the reinforced high strength concrete building. As the results of this study, the average actual 28-day compressive strength is 513 kgf/$\textrm{cm}^2$ and the coefficient of variation is 6.8%. The placing speed is comparable to normal strength concrete, however, the pump pressure is higher than that of normal strength concrete. To prevent cracks of massive and long concrete members, the control of hydration heat and shrinkage is very important.

  • PDF

Tension Stiffening Effect of High-Strength Concrete in Axially Loaded Members

  • Kim, Woo;Lee, Ki-Yeol;Yum, Hwan-Seok
    • Journal of the Korea Concrete Institute
    • /
    • v.15 no.6
    • /
    • pp.915-923
    • /
    • 2003
  • This paper presents the test results of total 35 direct tensile specimens to investigate the effect of high-strength concrete on the tension stiffening effect in axially loaded reinforced concrete tensile members. Three kinds of concrete strength 25, 60, and 80 MPa were included as a major experimental parameter together with six concrete cover thickness ratios. The results showed that as higher strength concrete was employed, not only more extensive split cracking along the reinforcement was formed, but also the transverse crack space became smaller. Thereby, the effective tensile stiffness of the high-strength concrete specimens at the stabilized cracking stage was much smaller than those of normal-strength concrete specimens. This observation is contrary to the current design provisions, and the significance in reduction of tension stiffening effect by employment of high-strength concrete is much higher than that would be expected. Based on the present results, a modification factor is proposed for accounting the effect of the cover thickness and the concrete strength.

An Experimental Study on the physical-mechanical Properties of Ultra-High-Strength-Concrete (초고강도 콘크리트의 물리적·역학적 특성에 관한 실험적 연구)

  • Park, Hee-Gon;Lee, Jin-Woo;Bae, Yeoun-Ki;Kim, Woo-Jae;Lee, Jae-Sam;Jung, Sang-Jin
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2008.11a
    • /
    • pp.107-111
    • /
    • 2008
  • As high-rise buildings with 100 or more stories are being constructed, it is inevitable to use high-performance materials including high-performance concrete. What is most important in high-performance concrete is extremely high strength in order to reduce the section of members in high-rise buildings. During the last several years, there have been active researches on Ultra-high-strength concrete. While these researches have been mostly focused on strength development, however, other accompanying physical properties have not been studied sufficiently. Thus, this study purposed to obtain and analyze data on the physical-mechanical properties of Ultra-high-strength concrete through experiments and to use the results as basic information on required performance of concrete used in high-rise buildings.

  • PDF

Fire Resistance of High Strength Concrete with Polypropylene and Vinylon Fiber (폴리프로필렌 및 비닐론 섬유를 혼입한 고강도콘크리트의 내화특성)

  • Nam Ji-Hyun;Oh Sang-Gyun;Kim Jung-Kil
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2005.05a
    • /
    • pp.165-169
    • /
    • 2005
  • The fire damage of building wouid effect on the safety of structure. When the reinforced concrete structure is heated by high temperature due to the fire, the structural resisting-force will be decreased. In a way, it is a requirement to use high strength concrete for high rise building. Particularly, fire resistance properties of high-strength concrete is more important than normal strength concretes. The fire outbreak of a high strength concrete by sudden temperature rise is a main problem, and causes crack by thermal stress, loading to the deterioration of the durability. In this study, normal and high strength mortar were exposed to a high temperature environment. And than fundamental data for the character change of concrete heated highly were presented by measuring compressive strength of concrete with polypropylene and vinylon fiber, before and after heating. As the results, it is proven that high strength mortar with polypropylene and vinylon fiber for prevents deterioration of durability by fiber.

  • PDF

A Study on Shear-Fatigue Behavior of Reinforced Concrete Beams using High Strength Concrete (고강도 콘크리트를 사용한 철근콘크리트 보의 전단피로거동에 관한 연구)

  • 곽계환;박종건
    • Journal of the Korea Concrete Institute
    • /
    • v.11 no.5
    • /
    • pp.119-130
    • /
    • 1999
  • Recently, as the building structure has been larger, higher, longer and more specialized, the demand of material with high-strength concrete for building has been increasing. In this research, silica-fume was used as an admixture in order to get a high-strength concrete. From the test result, High-strength concrete with cylinder strength of 1,200kgf/$\textrm{cm}^2$ in 28-days was produced and tested. The static test was carried out to measure the ultimate load, the initial load of flexural and diagonal cracking, crack patterns and fracture modes. The load versus strain and load versus deflection relations were obtained from the static test. The relation of cycle loading to deflections on the mid-span, the crack propagation and the modes of failure according to cycle number, fatigue life and S-N curve were observed through the fatigue test. Based on the fatigue test results, high-strength reinforced concrete beams failed to 57~66 percent of the static ultimate strength. Fatigue strength about two million cycles from S-N curves was certified by 60 percent of static ultimate strength.

An experimental study on the fragility factor of high strength concrete (고강도 콘크리트의 취도계수에 관한 실험적 연구)

  • Kim, Hui-Doo;Yang, Seong-Hwan
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2014.05a
    • /
    • pp.148-149
    • /
    • 2014
  • In modern society, population overcrowding and concentration of facilities are happened because of the concentration on to city. So this phenomenon demands improvement of material's performance, technical development of structure analysis and design and improvement of constructing ability .High strength concrete has some merits. High strengthening makes the cross section reduced, and that cause decrease of structure weight. And using high durable and superplasticizer promote liquidity, thus high quality concrete can be produced. Because of these advantages, this study is for showing validity of using it by compression/tensile strength experiment. As this experiment's result, when concrete become stronger, interface intensity coefficient between cement and aggregate is different and they don't adhere to each other. So there is brittle failure. Fragility factor also steadily increase with strong concrete, it tells high strength concrete has problem. Therefore the sources used in high strength concrete like cement and aggregate must have great quality. So the source's performance must be supervised well because their quality decides performance criteria.

  • PDF

An Experimental Study on Physical Properties of High-Strength Concrete Using Sea Sand (해사를 이용한 고강도 콘크리트의 물성실험 연구)

  • 박종협;정영수
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1995.10a
    • /
    • pp.159-163
    • /
    • 1995
  • The purpose of this experimental research is to not only devlop the high-strength concrete using sea and river sand, but also investigatc mechanical properites of the high-strength concrete, such as the elastic modulus, the compressive strength of concrete cyllinder, and etc. Also, rational analytical formula for elastic modulus has been proposed together with those for the splitting tensile strength and the flexural strength to be predicted from compressive strength of conccrete cyllinder.

  • PDF