• 제목/요약/키워드: high Reynolds number

검색결과 472건 처리시간 0.021초

Effect of Ice accretion on the aerodynamic characteristics of wind turbine blades

  • Sundaresan, Aakhash;Arunvinthan, S.;Pasha, A.A.;Pillai, S. Nadaraja
    • Wind and Structures
    • /
    • 제32권3호
    • /
    • pp.205-217
    • /
    • 2021
  • Cold regions with high air density and wind speed attract wind energy producers across the globe exhibiting its potential for wind exploitation. However, exposure of wind turbine blades to such cold conditions bring about devastating impacts like aerodynamic degradation, production loss and blade failures etc. A series of wind tunnel tests were performed to investigate the effect of icing on the aerodynamic properties of wind turbine blades. A baseline clean wing configuration along with four different ice accretion geometries were considered in this study. Aerodynamic force coefficients were obtained from the surface pressure measurements made over the test model using MPS4264 Simultaneous pressure scanner. 3D printed Ice templates featuring different ice geometries based on Icing Research Tunnel data is utilized. Aerodynamic characteristics of both the clean wing configuration and Ice accreted geometries were analysed over a wide range of angles of attack (α) ranging from 0° to 24° with an increment of 3° for three different Reynolds number in the order of 105. Results show a decrease in aerodynamic characteristics of the iced aerofoil when compared against the baseline clean wing configuration. The key flow field features such as point of separation, reattachment and formation of Laminar Separation Bubble (LSB) for different icing geometries and its influence on the aerodynamic characteristics are addressed. Additionally, attempts were made to understand the influence of Reynolds number on the iced-aerofoil aerodynamics.

Large eddy simulation of wind effects on a super-tall building

  • Huang, Shenghong;Li, Q.S.
    • Wind and Structures
    • /
    • 제13권6호
    • /
    • pp.557-580
    • /
    • 2010
  • A new inflow turbulence generation method and a combined dynamic SGS model recently developed by the authors were applied to evaluate the wind effects on 508 m high Taipei 101 Tower. Unlike the majority of the past studies on large eddy simulation (LES) of wind effects on tall buildings, the present numerical simulations were conducted for the full-scale tall building with Reynolds number greater than $10^8$. The inflow turbulent flow field was generated based on the new method called discretizing and synthesizing of random flow generation technique (DSRFG) with a prominent feature that the generated wind velocity fluctuations satisfy any target spectrum and target profiles of turbulence intensity and turbulence integral length scale. The new dynamic SGS model takes both advantages of one-equation SGS model and a dynamic production term without test-filtering operation, which is particular suitable to relative coarse grid situations and high Reynolds number flows. The results of comparative investigations with and without generation of inflow turbulence show that: (1) proper simulation of an inflow turbulent field is essential in accurate evaluation of dynamic wind loads on a tall building and the prescribed inflow turbulence characteristics can be adequately imposed on the inflow boundary by the DSRFG method; (2) the DSRFG can generate a large number of random vortex-like patterns in oncoming flow, leading to good agreements of both mean and dynamic forces with wind tunnel test results; (3) The dynamic mechanism of the adopted SGS model behaves adequately in the present LES and its integration with the DSRFG technique can provide satisfactory predictions of the wind effects on the super-tall building.

2차원 파형 채널의 형상변화에 따른 열유동 특성 (Thermo-Hydraulic Characteristics of Two-Dimensional Wavy Channels with Different Shape Parameters)

  • 김기완;김선주
    • 대한기계학회논문집B
    • /
    • 제38권1호
    • /
    • pp.1-8
    • /
    • 2014
  • 본 연구에서는 2차원 파형 채널의 여러 형상($0.5{\leq}{\in}{\leq}1.5$, $0.1{\leq}{\gamma}{\leq}0.4$)에 대한 층류 열유동 수치해석을 수행하고, 형상변화에 따른 열유동특성을 비교 분석하였다. 전자장비 냉각용으로 적용되고 있는 PAO(Polyalphaolefin)를 작동유체로 고려하였고, 균일한 물성치와 주기적으로 발달한 유동 및 채널벽면에서의 등온 조건을 가정하였다. 층류유량조건($1{\leq}Re{\leq}1000$)에서 레이놀즈수에 따른 유선 및 온도 분포, 등온 Fanning 마찰계수, Colburn 계수를 제시하였고, 분석 결과 낮은 레이놀즈(Re<50) 구간에서는 채널주름비가 크고 채널간격비가 작을수록, 높은 레이놀즈($Re{\geq}50$) 구간에서는 채널주름비와 채널간격비가 모두 클수록 열전달이 향상되었다.

시험과 전산해석을 이용한 고고도용 프로펠러 성능 분석 (Performance Evaluation of Propeller for High Altitude by using Experiment and Computational Analysis)

  • 박동훈;조태환;김철완;김양원;이융교
    • 한국항공우주학회지
    • /
    • 제43권12호
    • /
    • pp.1035-1047
    • /
    • 2015
  • 고고도 장기체공 축소형 전기 동력 무인기(EAV-2H+)용 프로펠러의 성능을 평가하기 위해 풍동시험과 전산해석을 수행하였다. 3종의 프로펠러에 대해 성능 곡선을 측정하고, 운용 조건을 평가하여 EAV-2H+에 적용 가능 여부를 판단하였다. 낮은 rpm 영역에서 성능 계수의 저하 경향을 확인하였다. 프로펠러 성능에 미치는 강체 천이 테이프 부착 효과를 측정하고 분석하였다. 상용 전산유체역학 코드를 사용한 성능 해석을 수행하여 시험과 해석의 추력계수-동력계수 선도가 잘 일치함을 확인하였다. 전진비에 따른 성능 계수를 비교하고 결과 차이에 기여하는 시험장치의 영향을 평가하였다. 시험에서 관찰된 낮은 rpm 영역의 성능 감소 경향을 transition SST 모델이 유사하게 모사함을 확인하였다. 낮은 레이놀즈수에 의한 깃 요소의 공력 성능 저하가 프로펠러 성능 감소의 주원인으로 분석되었다. 고고도 조건 해석으로부터 프로펠러 성능 저하를 확인하였다.

높은 레이놀즈수를 가진 난류 진동 경계층에서의 k-ε과 k-ω 난류모형의 비교 (Comparative Study on k-ε and k-ω Closures under the Condition of Turbulent Oscillatory Boundary Layer Flow at High Reynolds Number)

  • 손민우;이관홍;이길성;이두한
    • 한국수자원학회논문집
    • /
    • 제44권3호
    • /
    • pp.189-198
    • /
    • 2011
  • 본 연구는 난류현상의 모형화를 위해 널리 이용되는 k-$\varepsilon$과 k-$\omega$ 난류모형을 비교하는 것이 목적으로, 횡방향 흐름이 무시될 수 있는 U-튜브 모양의 터널형 수로 내 높은 레이놀즈수를 가진 진동 경계층 흐름에 두 난류해석방법을 적용하였다. 난류모형의 적용은 1차원 연직 모형을 통해 이루어지며, 수치 모의 결과, 유속의 분포와 난류운동에너지 (turbulent kinetic energy) 모두에서 두 모형이 매우 유사한 결과를 나타낸다. 이를 통하여, 횡방향 압력경사가 무시될 수 있는 조건에서는 k-$\varepsilon$과 k-$\omega$ 난류모형이 큰 차이를 보이지 않고, 우수한 결과를 나타냄을 알 수 있다. 따라서 직선형 하천 및 하구부, 해안에서의 파랑 흐름 등과 같이 횡방향의 압력경사가 미미한 지역에서의 난류를 수치적으로 해석할 경우, 기존의 풍부한 연구를 통해 매개변수의 검보증이 장기간 이루어진 k-$\varepsilon$ 모형을 이용하는 것이 추천된다.

인조 꼬리지느러미가 압전작동기 구동형 생체모사 물고기 로봇의 성능에 미치는 영향 (Effect of Artificial Caudal Fin on Performance of a Biomimetic Fish Robot Actuated by Piezoelectric Actuators)

  • 허석;박훈철;테디위구나;구남서
    • 대한기계학회:학술대회논문집
    • /
    • 대한기계학회 2007년도 춘계학술대회A
    • /
    • pp.429-434
    • /
    • 2007
  • This paper presents an experimental and parametric study of a biomimetic fish robot actuated by the Lightweight Piezo-composite Actuator(LIPCA). The biomimetic aspects in this work are the oscillating tail beat motion and shape of caudal fin. Caudal fins that resemble fins of BCF(Body and Caudal fin) mode fish were made in order to perform parametric study concerning the effect of caudal fin characteristics on thrust production at an operating frequency range. The observed caudal fin characteristics are the shape, area, and aspect ratio. It was found that a high aspect ratio caudal fin contributes to high swimming speed. The fish robot was propelled by artificial caudal fins shaped after thunniform-fish and mackerel caudal fins, which have relatively high aspect ratio, produced swimming speed as high as 2.364 cm/s and 2.519 cm/s, respectively, for 300 Vpp input voltage excited at 0.9 Hz. Thrust performance of the biomimetic fish robot was examined by Strouhal number, Froude number, Reynolds number, and Net forward force.

  • PDF

공기유동에 대한 고온상태의 비원형 도과내에서의 열전달 및 압력강하의 측정 (Measurement of Heat Transfer and Friction Coefficients for Flow of Air in Noncircular Ducts At High Surface Temperatures.)

  • 이동렬
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제25권3호
    • /
    • pp.552-562
    • /
    • 2001
  • Measurement of average of heat transfer and friction coefficients were obtained with air flowing through electrically heated ducts having square, rectangular(aspect ration, 5), and triangular cross section for range of surface temperature from $540^{\circ}$to $1780^{\circ}$ R and Reynolds number from 1000 to 330,000. The results indicates that the effect of heat flux on correlations of the average heat transfer and friction coefficients is similar to that obtained for circular tubes in previous investigation and was nearly eliminated by evaluating the physical properties and density of the air a film temperature halfway between the average surface and fluid bulk temperatures, With the Nusselt and Reynolds numbers on the hydraulic diameter of the ducts, the data for the noncircular ducts could be represented by the same equations obtained in the previous investigation for circular tubes. Correlation of the average difference between the surface corner and midwall temperatures for the square duct was in agreement with predicted values from a previous analysis. However, for the rectangular and triangular ducts, the measured corner temperature was greater by approximately 20 and 35 percent, respectively, than the values predicted by analysis.

  • PDF

가스터빈용 열교환기의 주름진 덕트에서 종횡비 변화가 열전달 특성에 미치는 영향 (Effects of Duct Aspect Ratio on Heat Transfer in Wavy Duct of Heat Exchanger of Gas Turbine)

  • 김한호;황상동;조형희;최재호;전승배
    • 유체기계공업학회:학술대회논문집
    • /
    • 유체기계공업학회 2001년도 유체기계 연구개발 발표회 논문집
    • /
    • pp.339-344
    • /
    • 2001
  • The present study investigates convective heat/mass transfer and flow characteristics in wavy ducts of primary surface heat exchanger. Experiments using a naphthalene technique are carried out to determine the local transfer characteristics for flow in the corrugated wall duct. The aspect ratios of the rectangular duct cross-section are 7.3, 4.7 and 1.8 with a corrugation angle of $145^{\circ}$. The Reynolds numbers, based on the duct hydraulic diameter, are ranged from 1000 to 5000. The local heat/mass transfer measurement is conducted in the spanwise directions. The results show that Tayler-Gortler vortices exist on the pressure surface. Flow separation on the suction surface appears at a high Reynolds number resulting in a sharp decrease in the local transfer rates, but relatively high transfer rates are obtained in the reattachment region.

  • PDF

3차원 공동의 폭변화에 따른 초음속 유동에 대한 수치분석연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수;최홍일
    • 한국전산유체공학회:학술대회논문집
    • /
    • 한국전산유체공학회 2006년도 추계 학술대회논문집
    • /
    • pp.181-184
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation and reattachment, shock and expansion waves. The general cavity flow phenomena include the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity' flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions, The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio(L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyized and compared with the results of Rossiter's Eq.

  • PDF

공동의 폭 변화에 따른 3차원 초음속 공동 유동연구 (NUMERICAL ANALYSIS OF THREE DIMENSIONAL SUPERSONIC CAVITY FLOW FOR THE VARIATION OF CAVITY SPANWISE RATIO)

  • 우철훈;김재수
    • 한국전산유체공학회지
    • /
    • 제11권4호
    • /
    • pp.62-66
    • /
    • 2006
  • High-speed flight vehicle have various cavities. The supersonic cavity flow is complicated due to vortices, flow separation, reattachment, shock waves and expansion waves. The general cavity flow phenomena includes the formation and dissipation of vortices, which induce oscillation and noise. The oscillation and noise greatly affect flow control, chemical reaction, and heat transfer processes. The supersonic cavity flow with high Reynolds number is characterized by the pressure oscillation due to turbulent shear layer, cavity geometry, and resonance phenomenon based on external flow conditions. The resonance phenomena can damage the structures around the cavity and negatively affect aerodynamic performance and stability. In the present study, we performed numerical analysis of cavities by applying the unsteady, compressible three dimensional Reynolds-Averaged Navier-Stokes(RANS) equations with the ${\kappa}-{\omega}$ turbulence model. The cavity model used for numerical calculation had a depth(D) of 15mm cavity aspect ratio (L/D) of 3, width to spanwise ratio(W/D) of 1.0 to 5.0. Based on the PSD(Power Spectral Density) and CSD(Cross Spectral Density) analysis of the pressure variation, the dominant frequency was analyzed and compared with the results of Rossiter's Eq.